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Independent sets

Graph G = (V , E).

An independent set is a subset of V such that no two are adjacent.

I(G) = the collection of independent sets in G.

We are interested in approximating the size of I(G).
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The hardcore model

Consider the following distribution:

π(I) ∝ λ|I|

for I ∈ I(G) and some λ > 0.

This is also called the hardcore model with activity λ.

Partition function Z =
∑

I∈I(G) λ
|I|.

In particular, if λ = 1, Z = |I(G)|.
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Computational transition

Approximate counting weighted independent sets

(or approximate Z for the hardcore model)

For G with a degree bound ∆:

Activity λλc(∆) =
(∆−1)∆−1

(∆−2)∆

FPTAS NP-hard

Algorithm: [Weitz 06]

Hardness: [Sly 10] [Sly Sun 14] [Galanis, Štefankovič, Vigoda 16]
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Counting independent sets

Specialize to approximate counting independent sets (fix λ = 1):

For G with a degree bound ∆:

∆ ⩾ 6∆ ⩽ 5

FPTAS NP-hard

(∆ = 5 is the largest integer so that λc(∆) > 1.)

Algorithm: [Weitz 06]

Hardness: [Sly 10]
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Independent sets in hypergraphs

Hypergraph H = (V , F ), where a hyperedge e ∈ F is a subset of V .

Independent set I: I ⊆ V and ∀e ∈ F , e ̸⊂ I. (NOT-ALL-IN)

Examples:
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Independent sets in hypergraphs

Hypergraph H = (V , F ), where a hyperedge e ∈ F is a subset of V .

Independent set I: I ⊆ V and ∀e ∈ F , e ̸⊂ I. (NOT-ALL-IN)

Examples:

v1

22 · 23 + (22 − 1)(23 − 1)

many independent sets
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Monotone CNF

Independent Sets in Hypergraphs ⇔

Satisfying assignments of monotone CNF formulas.

Vertices are variables. Hyperedges are clauses.

(x1 ∨ x2 ∨ x3︸ ︷︷ ︸
C1

)∧ (x1 ∨ x4 ∨ x5 ∨ x6︸ ︷︷ ︸
C2

)
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Bounded occurrences

Name #HYPERINDSET(∆, k).

Instance A hypergraph H with:
maximum vertex degree ⩽ ∆ (variable read-∆);
hyperedge cardinality ⩾ k (clause arity).

Output The number Z of independent sets in H.
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Previously . . .

Based on Markov chain Monte Carlo:

There is a FPRAS for #HYPERINDSET(∆, k) if k ⩾ ∆+ 2.

[Dyer Greenhill 00], [Borderwich, Dyer, Karpinski 08, 06].

Based on correlation decay:

There is a FPTAS for #HYPERINDSET(∆, k) if ∆ ⩽ 5 for any integer k ⩾ 2.

[Liu Lu 15]

#HYPERINDSET(∆, 2) is at least as hard as counting independent sets.

Hence FPTAS for k = 2, ∆ ⩽ 5 is optimal. (∆ ⩾ 6 is NP-hard [Sly 10].)
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Our results

Theorem

There is a FPTAS for #HYPERINDSET(∆, k) if

1 ∆ = 6 and k ⩾ 3;

2 For ∆ ⩾ 200, k ⩾ 1.66∆.

For ∆ = 6, k = 3 is optimal as #HYPERINDSET(6, 2) is NP-hard [Sly 10].

k ⩾ ∆ only slightly improves k ⩾ ∆+ 2 [Borderwich, Dyer, Karpinski 06],

but this improvement is essential for our application of counting dominating

sets in regular graphs.
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Hardness

Theorem

For any integer ∆ ⩾ 5 · 2k/2, it is NP-hard to approximate #HYPERINDSET(∆, k),

even within an exponential factor.

∆ ⩾ 5 · 2k/2∆ ⩽ k

FPTAS NP-hard
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Dominating sets

Graph G = (V , E).

D ⊆ V is dominating if every v ∈ V either ∈ D or is adjacent to some v ′ ∈ D.
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Dominating sets

Graph G = (V , E).

D ⊆ V is dominating if every v ∈ V either ∈ D or is adjacent to some v ′ ∈ D.
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Counting dominating sets

Name #REGDOMSET(∆).

Instance A ∆-regular graph G.

Output The number of dominating sets in G.
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Dominating sets ⩽T Independent sets in hypergraphs

Express dominating sets as a CSP problem:

Each vertex is a variable and a constraint (NOT-ALL-OUT).

v1

v2

v3

v4 x1 x2 x3 x4

C1 C2 C3 C4

#REGDOMSET(∆) ⩽T #HYPERINDSET(∆+ 1,∆+ 1)
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Counting dominating sets

#REGDOMSET(∆) ⩽T #HYPERINDSET(∆+ 1,∆+ 1)

Theorem

There is a FPTAS for #HYPERINDSET(∆, k) if
(1) ∆ = 6 and k ⩾ 3; (2) For ∆ ⩾ 200, k ⩾ ∆.

Corollary

There is a FPTAS for #REGDOMSET(∆) if ∆ ⩽ 5 or ∆ ⩾ 199.

Theorem
Approximately counting dominating sets is NP-hard in graphs with bounded
degree ∆ ⩾ 18, even within an exponential factor.

Note the difference between being regular and bounded degree!
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The Algorithm
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A recursion for counting independent sets [Weitz 06]

PG(v) =
|{I ∈ I | v ̸∈ I}|

|I|
=

Z (G − v)
Z (G)

=
Z (G − v)

Z (G − v) + Z (G − v − N(v))

=
1

1 + Z(G−v−N(v))
Z(G−v)

Suppose N(v) = {v1, . . . , vd }.

Z (G − v − N(v))
Z (G − v)

=
Z (G − v − v1)

Z (G − v)
· Z (G − v − v1 − v2)

Z (G − v − v1)
· · · · Z (G − v − N(v))

Z (G − v − (N(v) − vd ))

= PG1(v1) · PG2(v2) · · · ·PGd (vd )

Here Gi = G − v − v1 − · · ·− vi−1.
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Computation Tree

The algorithm for #HYPERINDSET(∆, k) is a similar recursion [Liu Lu 15],

except that each step has possibly (∆− 1)(k − 1) many branches.

The recursion forms a computation tree.

We stop the recursion after O(log n) many steps.

The layer of depth ℓ corresponds to vertices that

have distance ℓ from v .

The main task is to bound the error.

G

G1,1 G1,2

. . . . . .

G∆−1,k−1
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Strong spatial mixing

SSM: Let σΛ and τΛ be two partial configurations on Λ ⊆ V .

Let S be the set where σΛ and τΛ differ.

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v , S)))

Roughly speaking, the influence of the boundary decays exponentially,

even with some vertices fixed within the radius.
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An example: recursion

a

b c d

e f

⇒

a

b c d

e fd c

f ea

c c

a
e f

f e

c c
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An example: strong spatial mixing

SSM:

a

b c d

e fd c

f ea

c c

a
e f

f e

c c

v.s.

a

b c d

e fd c

f ea

c c

a
e f

f e

c c
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SSM for hypergraph independent sets

In the computation tree, hyperedge sizes will decrease.

Eventually, the size may go down to 2.

Hence SSM does not hold for independent sets in hypergraphs when ∆ ⩾ 6.

(SSM does not hold for independent sets in graphs if ∆ ⩾ 6.)

This is why [Liu, Lu 15] can only do ∆ ⩽ 5.

Heng Guo (QMUL) 2-Spin Systems ICALP 2016 22 / 25



Beyond strong spatial mixing

Our contribution is to provide a way to analyze correlation decay beyond the

strong spatial mixing bound.

Larger hyperedges have better decay.

Keep track of the total “deficits” of sub-instances.

Amortized analysis — SSM is worst case.
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Main difficulty — bound the decay rate

In the technical level, the main difficulty is to bound the decay rate function —

a optimisation problem with possibly (∆− 1)(k − 1) many variables.

Decay Rate

κd ,k(r) :=
1

ψ− F (r)χ

d∑
i=1

α−lki−1

∏ki−1
j=1

ri ,j
1+ri ,j

1 −
∏ki−1

j=1
ri ,j

1+ri ,j

ki−1∑
j=1

δci ,j
ψ− rχi ,j
1 + ri ,j

,

where

F (r) =
d∏

i=1

(
1 −

ki−1∏
j=1

ri ,j

1 + ri ,j

)

ci ,j =b2(k − 2) + smin(i ,d−b2) − max(0, b ′
k − i) − (j − 1)(∆− 1)1i⩽d−b2 .
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Open questions

The exact threshold for #HYPERINDSET(∆, k)?

Close the gap for #REGDOMSET(∆).

Other instances where SSM fails to capture the complexity?

Thank You!
Full version: arxiv.org/abs/1510.09193
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