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Some scenarios

Winners (and losers) 

ATP tennis, ICC cricket, Online gaming, EURO cup …

Using outcome of games between players / teams

Election

Primaries, Graduate admissions, Faculty hiring, Conference acceptance, …

Using votes / opinions of a population of …



Rank aggregation

Compute ranked order (with scores) of objects

Using partial / limited revealed preference data 

Revealed preferences

Sports: outcome of pairwise games

Conference: star rating or ordering of papers

Election: top (few) candidate(s)



Some scenarios

Social recommendations

Amazon, Netflix, YouTube, E-Harmony (Tinder?!), …

Using likes / dislikes of users / items, browse logs, …

Resource planning

Transportation, Retail inventory, …

Using information such as surveys, transactions, activity logs, …



Multiple rankings

Compute dominant rankings of objects with their prominence

Using partial / limited revealed preference data 

Revealed preferences

Amazon: purchases, reviews and ratings of products

Retail inventory: browses, purchases, …

Transportation: commute logs, survey responses, …



Data, Decision

Revealed preference data

Bag of pair-wise comparisons

Portugal defeated France : Portugal > France

Oleanna *****, Cuchi Cuchi ****: Oleanna > Cuchi Cuchi     

Browsed A, B and bought A : A > B

Decision

Rank aggregation

Rank order all objects along with their scores

Multiple rankings
Dominant rankings along with their prominence



(Choice) Model

Model of preference or choice

Distribution over rankings / permutations of objects

Revealed preferences are partial ordering
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Data, Model and Decision

Data

Bag of pair-wise comparisons

Learn the (choice) model 

From observations 

(Implicitly or explicitly)

Make decision

Rank aggregation:

Personalization:
Find top ranking for an individual given her/his preference history 

Find top ranking for population



Rank Aggregation

A. Ammar and D. Shah (Sigmetrics 2011)

S. Negahban, S. Oh and D. Shah (NIPS 2012, OR 2016)



A Brief History

If choice model is known

Axiomatic impossibility 

Celebrated result of Ken Arrow (1951)

Some algorithms using choice model

Kemeny optimal: minimizes dis-agreements

Satisfies extended Condorcet criteria 

NP-hard + 2 - approx via network flow (Dwork et al 2001)

Useful notion, but only approximation is computationally feasible



A Brief History

If choice model is known

Axiomatic impossibility 

Some algorithms using choice model

Borda count: average position as the score

Simple (adding numbers)

Celebrated result of Ken Arrow (1951)

Has useful axiomatic properties (Young 1974)

Can we adopt it when pair-wise comparison as observations?



Borda Count from Pair-wise Comparisons

Some formalism

N objects: teams, players, candidates, students, papers, …

Data: collection of pair-wise comparisons between N objects

C(i,j): number of comparisons with i > j 

Algorithm (Ammar and Shah 2011)

Compute p(i,j) = C(i,j) / (C(i,j) + C(j,i)) for all pairs (i, j)

fraction of times i defeats j

Score of object i:

how often i defeat others  

S(i) =
X

j

p(i,j)



Borda Count from Pair-wise Comparisons

Algorithm (Ammar and Shah 2011)

Compute p(i,j) = A(i,j) / (A(i,j) + A(j,i)) for all pairs (i, j)

Score of object i:

how often i defeats others ? 

Theorem (informal statement) (Ammar and Shah 2011)

If p(i,j) is exactly known for all pairs i,j then it is equivalent to 

Borda count with the entire choice model known!

In reality, we may know p(i,j) for a small fraction of pairs, and in a noisy form

S(i) =
X

j

p(i,j)



Noisy, Partial Pair-wise Comparisons

Various approaches have been proposed from different perspectives

… Saaty ’01, Dwork et al ’01, Caramanis ’11, Nowak et al ’11, ’13, ‘15, 
Fernoud ’11, Duchi et al ’12, …

We’ll discuss

Rank centrality: a “natural” algorithm

An experiment

Properties



B	A	 >
<
9

1

score 0.9 score 0.1

Let N = 2: Two Players

Consider out-come of 10 matches

aren’t we taking observations too seriously?

Rank Centrality 
(Negahban, Oh, Shah ’12, ’16)



B	A	 >
<
8

0

score 0.9 score 0.1

What if one team has lost it all - does it deserve score of 0?

+1

+1

Laplace correction

Let N = 2: Two Players

Rank Centrality 
(Negahban, Oh, Shah ’12, ’16)



B	A	

Algorithm: scores are stationary distribution of the Markov Chain

Let N = 2: Two Players

p(A,B) = (C(A,B)+1) / (C(A,B) + C(B,A)+2)

p(B,A)

p(A,B)

p(A,B)

p(B,A)

p(B,A) = 1-p(A,B) = (C(B,A)+1) / (C(A,B) + C(B,A)+2)

where, 

Rank Centrality 
(Negahban, Oh, Shah ’12, ’16)



B	

A	

Algorithm: scores are stationary distribution of the Markov Chain

For general N

C	

p(B,A)/2d

p(A,B)/2d

p(A,C)/2d

p(C,A)/2d

where, d = max vertex degree of “comparison graph”

Rank Centrality 
(Negahban, Oh, Shah ’12, ’16)
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X

V 2N(A)

p(V,A)/2d



Rank Centrality: ICC Cricket Ranking



Learns parameters of a popular choice model!

And does so utilizing minimal samples

Multinomial Logit Model

Thurstone 1927, Luce 1945, Bradley-Terry 1960s, McFadden 1965, …

Rank Centrality: Property 
(Negahban, Oh, Shah ’12, ’16)

Ranking is sampled by sampling elements in positions 1, 2, …iteratively

proportional to their parameter values

Each object has as associated positive parameter 

w(i) for object i



Examples

Multinomial Logit Model

w(i) = 1/N for all i 

uniform distribution

w(1) >> w(2) >> w(3) … (1 > 2 > 3 …)

delta distribution (single permutation)

all N! permutations

mode: ranking per w(i)



Theorem (informal statement)

Rank centrality learns parameters w(i) 

Rank Centrality: Property 
(Negahban, Oh, Shah ’12, ’16)

as long as comparison graph is connected

where C depends on

inverse of spectral gap of normalized Laplacian of comparison graph

Normalized error in norm of learnt parameter vs true parameter

kŵ� wk
w

 C

r
logN

k d

max degree of graph

comparisons per pair

If graph can be designed, use a spectral expander

will require O(N log N) comparisons



Personalization

A. Ammar, S. Oh, D. Shah and L. Voloch (Sigmetrics 2014)

S. Oh and D. Shah (NIPS 2014)

G. Bresler, D. Shah and L. Voloch (Sigmetrics 2016)

S. Jagabathula and D. Shah (Info Th Trans 2011)



Personalization

Data

Partial preferences across population

Personalization for the specific individual

Find individual’s (choice) model

given her/his history and population preference data

Compute ranking of objects using it

And a specific individual’s partial preferences

It’s personalized rank aggregation



Personalization

Compute individual’s (choice) model: A Bayesian view

Use population data to learn (choice) model

Individual’s model is conditional distribution (over permutations)

given her/his history

Population (choice) model

A generic view: mixture of MNL models 

all N! permutations



Personalization

Use population data to learn (choice) model

Individual’s model is conditional distribution (over permutations)

given her/his history

Individual’s (choice) model

Identify the mixture component (it’s an MNL model)

use it to solve rank aggregation 

Equivalently, estimate
P(i > j | history) for all pairs of i, j

Compute individual’s (choice) model: A Bayesian view



Personalization

Key problems

Learn mixture MNL from data

Identify individual’s mixture component

Or directly estimate 
P(i > j | history) for all pairs of i, j



Learning mixture of MNL

Data

pair-wise comparisons
ideally, exact pair-wise marginals p(i,j) probability that i defeats j



Learning mixture of MNL

Impossibility to learn mixture of 2 components with N = 4

even from exact pair-wise marginals

a

b

c

d

1

2

3

4

= a > b > d > c



Learning mixture of MNL

Impossibility to learn mixture of 2 components with N = 4

even from exact pair-wise marginals

a

b

c

d

1

2

3

4

c

d

3

4

a

b

1

2

0.5 0.5

a

b

c

d

1

2

3

4

c

d

3

4

a

b

1

2

0.5 0.5

Can not differentiate from the above two cases using pair-wise marginals



Learning mixture of MNL

Theorem (informal statement) (Ammar, Oh, Shah, Voloch ’14)

All mixture distributions of N/2 components can not be learnt accurately

even from all the log N-wise marginals.

Is there any hope with additional assumption?

with pair-wise marginals?



Learning mixture of MNL

Theorem (informal statement) (Jagabathula, Shah ’11)

When mixture components are drawn at random, mixtures with up to

log N components can be learnt using exact pair-wise marginals

extends for k-wise marginals

but requires exact knowledge, what about noise?



Learning mixture of MNL

Theorem (informal statement) (Oh, Shah ’14)

When there is sufficient “gap” between mixture components, then using 

noisy pair-wise marginals, mixture model can be learnt with fixed number of  

spectral algorithm: uses higher order moments to learn the parameters

but “sufficient gap” is essential

mixture components using poly(N) comparisons.

is “gap” really needed?

well, yes (or s’thing like it) for learning mixture MNL



Personalized Ranking

Recall

Goal is to estimate
P(i > j | history) for all pairs of i, j

If two components are “too close”, both might have similar
P(i > j | history) for all pairs of i, j

Therefore 
it may be possible to do without explicit “gap” condition



Personalized Ranking

A recent result (Bresler, Shah, Voloch ’16)

To estimate binary preferences (likes / dislikes) accurately  

length of history need to scale with the “dimension” of the distribution

“dimension” is less stringent than the “gap” requirement

e.g. “dimension”, for k mixture components, is log k independent of “gap”

when “dimension” is constant

history required depends only on accuracy desired

extending it for estimating P(i > j)?



Personalized Ranking

Yelp Boston Data of ~1K restaurants

Task:

For an individual predict whether i > j or i < j

Data:



Personalized Ranking

April

22.5%

45%

67.5%

90%

50%
57%

63%

83% Comparison Filtering
Collaborative Filtering
Population
Random

Yelp Boston Data of ~1K restaurants

Task:

For an individual predict whether i > j or i < j

Data:



Related Works
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Noisy sorting, Rank aggregation and Tournaments
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Learning mixtures
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Oh-Thekumparampil-Xu (2015), Negahban (2015)
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In Practice: Few Examples

Pricing, Revenue Management and Assortment Optimization

Talluri-Van Ryzin (2004)

Collecting Opinion

allourideas.org

http://celect.com

Farias-Jagabathula-Shah (2011)

Policy / Transportation

McFadden (1970s-), Ben Akiva (1980s-)

Rankings, Winners

TrueSkill rating

http://allourideas.org


Summary

Choice and computation

Ubiquitous in social scenarios
Distribution over permutation is a powerful model of choice

However, historically it has been largely ignored because

computational difficulties
lack of data

This talk

Addressing computational challenge for decision making with choice model

Glimpse of exciting work across disciplines of CS / EE / Stats / OR / Econ 


