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E.g. profinite equations for the regular fragment of AC? = FO(N)
(Barrington, Compton, Straubing and Thérien 1990)
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What if we are interested in possibly non-regular languages?

» A* is the dual Stone space of Reg(A*)
(Birkhoff 1937, Pippenger 1997, Almeida, ...);

» The combination of Eilenberg's and Reiterman’s theorems can
be seen as an instance of Stone duality (Gehrke, Grigorieff and
Pin 2008). Here ultrafilter equations are crucial;

» Understanding the correspondence between classes of
languages defined by some logic (e.g. FO(N')) and topological
recognizers, by identifying the construction dual to applying a
layer of (existential) quantifier.



Existential quantification in the regular case
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is the set of words with a marked spot.
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Definition

If M is a monoid, then O M is a bilateral semidirect product: it has

Pfin(M) x M as underlying set and the multiplication is given by
(S,m)«(T,n):=(S-nUm-T,m-n).

Lemma
If M recognises Lo (x), then OM recognises Ly ¢(x)-

Lox) ~ Laxo(x)
M ~ OM

An alternative to O M is the block product U;[0M.



The Schiitzenberger product for Syntactic Spaces



Consider a finite monoid M and a morphism p: A* — M. Then the
Boolean algebra of A*-languages recognised by u is isomorphic to
the power-set algebra P(M).

w A —- M
P(A*) <> P(M): =t

There is a correspondence between monoid quotients and
embeddings as power-set subalgebras closed under quotients.
This is a special case of a more general phenomenon, namely
Stone duality.
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Stone duality for Boolean algebras

Ultrafilters
Boolean Algebras Stone Spaces®P
Clopens

Stone spaces = Zero-dimensional compact Hausdorff spaces

An example is

Ultrafilters
“— T . Stone-Cech
P(A") — BAT) = compactification of A*

Clopens
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Now, let A be a finite alphabet and ¢(x) be any (!) formula with a
free first-order variable x. Assume 7 recognises Lo(x)-

B(A*@N)
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B(A") B(A X 2)*

L

X

There is a continuous map
B(AT) — V(X)

into the Vietoris hyperspace of X.
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Let X be any topological space. Then its Vietoris hyperspace has
V(X)={K C X | K is closed} as underlying set, and its topology
is the generated by the sets of the form

OU ={K e V(X) | K C U}, OU:={K e V(X)| KNU % 0}

for U an open subset of X.

Theorem
X Stone space = V(X) Stone space,

and Prin(X) is dense in V(X).
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Definition
If X is a Stone space, O X:=V(X) x X with the product topology.
Then (0X,OM) is a Stone space with an internal monoid.

Proposition
If (X, M) recognises Lo (x), then (OX, OM) recognises Ly o(x)-

Lox) ~ Laxo(x)
(X, M) ~ (0X,OM)

Theorem
B(OX>A) = <B(X>A) U B(X>A X 2)E|>a

where B(X, A x 2)3 is the Boolean algebra closed under quotients
generated by {L3 | L € B(X,A x 2)}.
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What | have presented:
» Notion of recognition in the topological setting

» (& as dual construction to 3

What | have not presented (look up in the paper!):
» The binary product

» Ultrafilter equations

Future directions:
» “Good" basis of equations

» Connections with generalization of block product
(Krebs et al.)
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