
Incremental 2-Edge-Connectivity
In Directed Graphs

ICALP 2016, Rome

Loukas Georgiadis

University of Ioannina
Greece

Giuseppe F. Italiano

University of Rome
Tor Vergata

Italy

Nikos Parotsidis

University of Rome
Tor Vergata

Italy

Outline

ICALP 2016, Rome

 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problem definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion

Outline

ICALP 2016, Rome

 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problem definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion

Undirected: Connected components

ICALP 2016, Rome

Let 𝐺 = (𝑉, 𝐸) be a undirected graph.
• 𝐺 is connected if there is a path between any two

vertices.
• The connected components of 𝐺 are its maximal

connected subgraphs.

Undirected: Connected components

ICALP 2016, Rome

Let 𝐺 = (𝑉, 𝐸) be a connected undirected graph.
• An edge is a bridge, if its removal increases the

number of connected components.

Undirected: Connected components

ICALP 2016, Rome

Let 𝐺 = (𝑉, 𝐸) be a connected undirected graph.
• An edge is a bridge, if its removal increases the

number of connected components.

Undirected: Connected components

ICALP 2016, Rome

By Menger’s theorem, two vertices are 2-edge-
connected iff the removal of any bridge leaves them in
the same connected component.

Undirected: Connected components

ICALP 2016, Rome

By Menger’s theorem, two vertices are 2-edge-
connected iff the removal of any bridge leaves them in
the same connected component.

Undirected: Connected components

ICALP 2016, Rome

By Menger’s theorem, two vertices are 2-edge-
connected iff the removal of any bridge leaves them in
the same connected component.

Two vertices are 2-edge-connected if there are two
edge-disjoint paths between them.

Undirected: Connected components

ICALP 2016, Rome

By Menger’s theorem, two vertices are 2-edge-
connected iff the removal of any bridge leaves them in
the same connected component.

Two vertices are 2-edge-connected if there are two
edge-disjoint paths between them.

Undirected: Connected components

ICALP 2016, Rome

By Menger’s theorem, two vertices are 2-edge-
connected iff the removal of any bridge leaves them in
the same connected component.

Two vertices are 2-edge-connected if there are two
edge-disjoint paths between them.

The 2-edge-connected blocks of G are its maximal
subsets 𝐵 ⊆ 𝑉 s.t. 𝑢 and 𝑣 are 2-edge-connected
∀𝑢, 𝑣 ∈ 𝐵

Undirected: Connected components

ICALP 2016, Rome

By Menger’s theorem, two vertices are 2-edge-
connected iff the removal of any bridge leaves them in
the same connected component.

Two vertices are 2-edge-connected if there are two
edge-disjoint paths between them

The 2-edge-connected blocks of G are its maximal
subsets 𝐵 ⊆ 𝑉 s.t. 𝑢 and 𝑣 are 2-edge-connected
∀𝑢, 𝑣 ∈ 𝐵

 𝑂(𝑚 + 𝑛) time algorithm [Tarjan 1972]

Outline

ICALP 2016, Rome

 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problem definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion

Directed: Strongly connected components

ICALP 2016, Rome

A B

C D

E F

G H

I J

Let 𝐺 = (𝑉, 𝐸) be a directed graph.
• 𝐺 is strongly connected if there is a directed path

from each vertex to every other vertex.
• The strongly connected components of 𝐺 are its

maximal strongly connected subgraphs.

Directed: Strongly connected components

ICALP 2016, Rome

A B

C D

E F

G H

I J

Let 𝐺 = (𝑉, 𝐸) be a directed graph.
• 𝐺 is strongly connected if there is a directed path

from each vertex to every other vertex.
• The strongly connected components of 𝐺 are its

maximal strongly connected subgraphs.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

Let 𝐺 = 𝑉, 𝐸 be a strongly connected directed
graph.
• An edge 𝑒 ∈ 𝐸 is a strong bridge if its removal

increases the strongly connected components of 𝐺.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

Let 𝐺 = 𝑉, 𝐸 be a strongly connected directed
graph.
• An edge 𝑒 ∈ 𝐸 is a strong bridge if its removal

increases the strongly connected components of 𝐺.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

Let 𝐺 = 𝑉, 𝐸 be a strongly connected directed
graph.
• An edge 𝑒 ∈ 𝐸 is a strong bridge if its removal

increases the strongly connected components of 𝐺.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

By Menger’s Theorem, vertices 𝑢 and 𝑣 are 2-edge
connected if and only if the removal of any strong bridge
leaves them in same strongly connected component.

Vertices 𝑢 and 𝑣 are 2-edge connected if there are
two edge-disjoint paths from 𝑢 to 𝑣 and two edge-
disjoint paths from 𝑣 to 𝑢.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

By Menger’s Theorem, vertices 𝑢 and 𝑣 are 2-edge
connected if and only if the removal of any strong bridge
leaves them in same strongly connected component.

Vertices 𝑢 and 𝑣 are 2-edge connected if there are
two edge-disjoint paths from 𝑢 to 𝑣 and two edge-
disjoint paths from 𝑣 to 𝑢.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

By Menger’s Theorem, vertices 𝑢 and 𝑣 are 2-edge
connected if and only if the removal of any strong bridge
leaves them in same strongly connected component.

Vertices 𝑢 and 𝑣 are 2-edge connected if there are
two edge-disjoint paths from 𝑢 to 𝑣 and two edge-
disjoint paths from 𝑣 to 𝑢.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

By Menger’s Theorem, vertices 𝑢 and 𝑣 are 2-edge
connected if and only if the removal of any strong bridge
leaves them in same strongly connected component.

Vertices 𝑢 and 𝑣 are 2-edge connected if there are
two edge-disjoint paths from 𝑢 to 𝑣 and two edge-
disjoint paths from 𝑣 to 𝑢.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

By Menger’s Theorem, vertices 𝑢 and 𝑣 are 2-edge
connected if and only if the removal of any strong bridge
leaves them in same strongly connected component.

Vertices 𝑢 and 𝑣 are 2-edge connected if there are
two edge-disjoint paths from 𝑢 to 𝑣 and two edge-
disjoint paths from 𝑣 to 𝑢.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

By Menger’s Theorem, vertices 𝑢 and 𝑣 are 2-edge
connected if and only if the removal of any strong bridge
leaves them in same strongly connected component.

Vertices 𝑢 and 𝑣 are 2-edge connected if there are
two edge-disjoint paths from 𝑢 to 𝑣 and two edge-
disjoint paths from 𝑣 to 𝑢.

A 2-edge-connected block of 𝐺 is a maximal subset
𝐵 ⊆ 𝑉 s. t. 𝑢 and 𝑣 are 2-edge connected for all
𝑢, 𝑣 ∈ 𝐵.

Directed: 2-edge-connectivity

ICALP 2016, Rome

A B

C D

E F

G H

I J

By Menger’s Theorem, vertices 𝑢 and 𝑣 are 2-edge
connected if and only if the removal of any strong bridge
leaves them in same strongly connected component.

Vertices 𝑢 and 𝑣 are 2-edge connected if there are
two edge-disjoint paths from 𝑢 to 𝑣 and two edge-
disjoint paths from 𝑣 to 𝑢.

A 2-edge-connected block of 𝐺 is a maximal subset
𝐵 ⊆ 𝑉 s. t. 𝑢 and 𝑣 are 2-edge connected for all
𝑢, 𝑣 ∈ 𝐵.

 𝑂(𝑚 + 𝑛) time algorithm
[Georgiadis, Italiano, Laura, P. 2015]

Outline

ICALP 2016, Rome

 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problem definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion

ICALP 2016, Rome

Problem definition

Graph + data
structure

ICALP 2016, Rome

Problem definition

Graph + data
structure

Are 𝑢 and 𝑣 2-
edge-connected

ICALP 2016, Rome

Problem definition

Graph + data
structure

Are 𝑢 and 𝑣 2-
edge-connected

Yes/No

ICALP 2016, Rome

Problem definition

Graph + data
structure

What are the 2-
edge-connected

blocks in 𝐺

ICALP 2016, Rome

Problem definition

Graph + data
structure

What are the 2-
edge-connected

blocks in 𝐺

{𝑎, 𝑏, 𝑑}, {𝑐, 𝑒}, {𝑓}

ICALP 2016, Rome

Problem definition

Graph + data
structure

ICALP 2016, Rome

Problem definition

Graph + data
structure

Insert (x,y)

ICALP 2016, Rome

Problem definition

Graph + data
structure

Insert (x,y)

ICALP 2016, Rome

Problem definition

Graph + data
structure

Are 𝑢 and 𝑣 2-
edge-connected

ICALP 2016, Rome

Problem definition

Graph + data
structure

Are 𝑢 and 𝑣 2-
edge-connected

Yes/No

ICALP 2016, Rome

Problem definition

Graph + data
structure

Goal:
Update time faster that recomputing
Fast query time

ICALP 2016, Rome

Dynamic graph algorithms

Problem Undirected graphs Directed graphs

Connectivity/
Transitive closure

Yes Yes

Connected components/
Strongly connected

components

Yes Yes

APSP Yes Yes

DFS tree Yes (only on DAGs)

MST Yes ?

2-edge-connectivity Yes ?

2-vertex-connectivity Yes ?

ICALP 2016, Rome

Incremental 2-edge-connectivity
Undirected VS Directed

Block tree structure

ICALP 2016, Rome

Incremental 2-edge-connectivity
Undirected VS Directed

Block tree structure

ICALP 2016, Rome

Incremental 2-edge-connectivity
Undirected VS Directed

Block tree structure

ICALP 2016, Rome

Incremental 2-edge-connectivity
Undirected VS Directed

No tree structure is possibleBlock tree structure

ICALP 2016, Rome

Incremental 2-edge-connectivity
Undirected VS Directed

No tree structure is possibleBlock tree structure

ICALP 2016, Rome

Incremental 2-edge-connectivity
Undirected VS Directed

No tree structure is possibleBlock tree structure

Outline

ICALP 2016, Rome

 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problems definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion

ICALP 2016, Rome

Simple-minded solutions

Never update

Always update

Update time Query time

𝑂(1) per insertion 𝑂(𝑚 + 𝑛)

𝑂(𝑚 + 𝑛) per insertion 𝑂(1)

ICALP 2016, Rome

Our algorithm

Update time Query time

𝑂(1) per insertion 𝑂(𝑚 + 𝑛)

𝑂(𝑚 + 𝑛) per insertion 𝑂(1)

𝑂(𝑚𝑛) total time 𝑂(1)Our algorithm

Never update

Always update

Outline

ICALP 2016, Rome

 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problems definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion

ICALP 2016, Rome

High-level idea

Dominator tree

2-edge-
connected

blocks

𝑂 𝑛 time
Labeling algorithm

Auxiliary components

ICALP 2016, Rome

𝑑𝑜𝑚 𝑤 = set of vertices that dominate 𝑤

𝑣 dominates 𝑤 if all paths from 𝑠 to 𝑤 contain 𝑣

𝑠

𝑣

𝑤

Dominators

Flow graph 𝐺 𝑠 = (𝑉, 𝐴, 𝑠) : all vertices are reachable from start vertex 𝑠

𝑣 dominates 𝑤 if all paths from 𝑠 to 𝑤 contain 𝑣

Dominators

𝐷(𝑠) = dominator tree of 𝐺(𝑠)𝐺(𝑠)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑠

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 = 𝑑(𝑔)

𝑔

ICALP 2016, Rome

𝑣 dominates 𝑤 if all paths from 𝑠 to 𝑤 contain 𝑣

Dominators

𝐷(𝑠) = dominator tree of 𝐺(𝑠)𝐺(𝑠)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑠

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 = 𝑑(𝑔)

𝑔

ICALP 2016, Rome

𝑣 dominates 𝑤 if all paths from 𝑠 to 𝑤 contain 𝑣

Dominators

𝐷(𝑠) = dominator tree of 𝐺(𝑠)𝐺(𝑠)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑠

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 = 𝑑(𝑔)

𝑔

ICALP 2016, Rome

𝑣 dominates 𝑤 if all paths from 𝑠 to 𝑤 contain 𝑣

Dominators

𝐷(𝑠) = dominator tree of 𝐺(𝑠)𝐺(𝑠)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑠

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 = 𝑑(𝑔)

𝑔

ICALP 2016, Rome

𝑣 dominates 𝑤 if all paths from 𝑠 to 𝑤 contain 𝑣

Dominators

𝐷(𝑠) = dominator tree of 𝐺(𝑠)𝐺(𝑠)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑠

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 = 𝑑(𝑔)

𝑔

ICALP 2016, Rome

Dominators

𝐷(𝑠) = dominator tree of 𝐺(𝑠)

O(𝑚𝑎(𝑚, 𝑛))-time algorithm: [Lengauer and Tarjan ’79]
O(𝑚 + 𝑛)-time algorithms:

[Alstrup, Harel, Lauridsen, and Thorup ‘97]

𝐺(𝑠)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑠

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 = 𝑑(𝑔)

𝑔

𝑣 dominates 𝑤 if all paths from 𝑠 to 𝑤 contain 𝑣

Exploiting dominator tree

𝑠

𝑎
𝑏 𝑐

𝑑 𝑒

𝑓

𝑔
ℎ

𝑖

𝑚

𝑘 𝑙
𝑗

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

ICALP 2016, Rome

Exploiting dominator tree

𝑠

𝑎
𝑏 𝑐

𝑑 𝑒

𝑓

𝑔
ℎ

𝑖

𝑚

𝑘 𝑙
𝑗

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

• All paths from 𝑠 to 𝑐 contain 𝑙, 𝑓, 𝑑

ICALP 2016, Rome

Exploiting dominator tree

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

• All paths from 𝑠 to 𝑐 contain 𝑙, 𝑓, 𝑑
• All paths from 𝑠 to 𝑐 contain the

strong bridges 𝑠, 𝑙 , 𝑓, 𝑑

ICALP 2016, Rome

𝑠

𝑎
𝑏 𝑐

𝑑 𝑒

𝑓

𝑔
ℎ

𝑖

𝑚

𝑘 𝑙
𝑗

Exploiting dominator tree

• All paths from 𝑠 to 𝑐 contain 𝑙, 𝑓, 𝑑
• All paths from 𝑠 to 𝑐 contain the

strong bridges 𝑠, 𝑙 , 𝑓, 𝑑
• A strong bridge is the only incoming

edge to the vertices of its subtree

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

ICALP 2016, Rome

𝑠

𝑎
𝑏 𝑐

𝑑 𝑒

𝑓

𝑔
ℎ

𝑖

𝑚

𝑘 𝑙
𝑗

ICALP 2016, Rome

Exploiting dominator tree

The dominator tree of the graph provides only partial information.

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

ICALP 2016, Rome

Exploiting dominator tree

The dominator tree of the graph provides only partial information.
The dominator tree of the reverse graph provides other partial information.

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

𝑠

𝑎 𝑏 𝑐 𝑑

𝑓

𝑒

𝐷𝑅

𝑔 𝑘 𝑙

ℎ

𝑚

𝑖 𝑗

ICALP 2016, Rome

Exploiting dominator tree

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

𝑠

𝑎 𝑏 𝑐 𝑑

𝑓

𝑒

𝐷𝑅

𝑔 𝑘 𝑙

ℎ

𝑚

𝑖 𝑗

Lemma [Georgiadis, Italiano, P.]: Two vertices 𝑢 and 𝑣 are 2-edge-connected iff
• Their nearest bridge 𝑒 in 𝐷 is common and they are not separated in 𝐺 ∖ 𝑒
• Their nearest bridge 𝑒 in 𝐷𝑅 is common and they are not separated in 𝐺 ∖ 𝑒

ICALP 2016, Rome

Exploiting dominator tree

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

𝑠

𝑎 𝑏 𝑐 𝑑

𝑓

𝑒

𝐷𝑅

𝑔 𝑘 𝑙

ℎ

𝑚

𝑖 𝑗

Lemma [Georgiadis, Italiano, P.]: Two vertices 𝑢 and 𝑣 are 2-edge-connected iff
• Their nearest bridge 𝑒 in 𝐷 is common and they are not separated in 𝐺 ∖ 𝑒
• Their nearest bridge 𝑒 in 𝐷𝑅 is common and they are not separated in 𝐺 ∖ 𝑒

𝑐 and 𝑔 are not 2-edge-connected since they have distinct nearest
bridges

ICALP 2016, Rome

Exploiting dominator tree

𝑐 and 𝑒 are 2-edge-connected iff they are strongly connected
in 𝐺 ∖ (𝑓, 𝑑)

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

𝑠

𝑎 𝑏 𝑐 𝑑

𝑓

𝑒

𝐷𝑅

𝑔 𝑘 𝑙

ℎ

𝑚

𝑖 𝑗

Lemma [Georgiadis, Italiano, P.]: Two vertices 𝑢 and 𝑣 are 2-edge-connected iff
• Their nearest bridge 𝑒 in 𝐷 is common and they are not separated in 𝐺 ∖ 𝑒
• Their nearest bridge 𝑒 in 𝐷𝑅 is common and they are not separated in 𝐺 ∖ 𝑒

ICALP 2016, Rome

Exploiting dominator tree

𝑓 and 𝑚 are 2-edge-connected iff they are strongly connected
in 𝐺 ∖ (𝑠, 𝑙) and in 𝐺 ∖ (𝑓, 𝑑)

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

𝑠

𝑎 𝑏 𝑐 𝑑

𝑓

𝑒

𝐷𝑅

𝑔 𝑘 𝑙

ℎ

𝑚

𝑖 𝑗

Lemma [Georgiadis, Italiano, P.]: Two vertices 𝑢 and 𝑣 are 2-edge-connected iff
• Their nearest bridge 𝑒 in 𝐷 is common and they are not separated in 𝐺 ∖ 𝑒
• Their nearest bridge 𝑒 in 𝐷𝑅 is common and they are not separated in 𝐺 ∖ 𝑒

Outline

ICALP 2016, Rome

 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problems definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion

ICALP 2016, Rome

Auxiliary components

Bridge decomposition: The forest
obtained by removing the strong bridges
from the dominator tree

Lemma: two vertices are 2-edge-
connected only if they are in the same
tree of the bridge decomposition

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

ICALP 2016, Rome

Auxiliary components

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

Bridge decomposition: The forest
obtained by removing the strong bridges
from the dominator tree

Lemma: two vertices are 2-edge-
connected only if they are in the same
tree of the bridge decomposition

ICALP 2016, Rome

Auxiliary components

Idea: Encode all the paths that do not use the incoming
strong bridge between vertices in the same tree of the
bridge decomposition with an auxiliary graph.

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace

the subpath outside with a shortcut edge

𝑟

𝑑(𝑟)

𝑥 𝑦

ICALP 2016, Rome

Auxiliary components

Idea: Encode all the paths that do not use the incoming
strong bridge between vertices in the same tree of the
bridge decomposition with an auxiliary graph.

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace

the subpath outside with a shortcut edge
𝑥 𝑦

𝑟

𝑑(𝑟)

ICALP 2016, Rome

Auxiliary components

Idea: Encode all the paths that do not use the incoming
strong bridge between vertices in the same tree of the
bridge decomposition with an auxiliary graph.

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace

the subpath outside with a shortcut edge
𝑥 𝑦

𝑟

𝑑(𝑟)

ICALP 2016, Rome

Auxiliary components

Idea: Encode all the paths that do not use the incoming
strong bridge between vertices in the same tree of the
bridge decomposition with an auxiliary graph.

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace

the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at 𝑟) are
disconnected by 𝑑 𝑟 , 𝑟 iff they are not strongly
connected in the auxiliary graph of their tree (in the same
auxiliary component).

𝑥 𝑦

𝑟

𝑑(𝑟)

ICALP 2016, Rome

Auxiliary components

Idea: Encode all the paths that do not use the incoming
strong bridge between vertices in the same tree of the
bridge decomposition with an auxiliary graph.

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace

the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at 𝑟) are
disconnected by 𝑑 𝑟 , 𝑟 iff they are not strongly
connected in the auxiliary graph of their tree (in the same
auxiliary component).

Algorithm: Two vertices 𝑢 and 𝑣 are 2-edge-connected iff
they are in the same auxiliary component in 𝐺 and 𝐺𝑅.

𝑥 𝑦

𝑟

𝑑(𝑟)

ICALP 2016, Rome

Auxiliary components

Idea: Encode all the paths that do not use the incoming
strong bridge between vertices in the same tree of the
bridge decomposition with an auxiliary graph.

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace

the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at 𝑟) are
disconnected by 𝑑 𝑟 , 𝑟 iff they are not strongly
connected in the auxiliary graph of their tree (in the same
auxiliary component).

GOAL: Incrementally maintain the bridge decomposition
and the auxiliary components.

𝑥 𝑦

𝑟

𝑑(𝑟)

Outline

ICALP 2016, Rome

 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problems definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion

ICALP 2016, Rome

Tools

 Incremental dominator tree

• 2012 – Georgiadis, Italiano, Laura, Santaroni
• 𝑂 𝑚min{𝑛, 𝑘} + 𝑘𝑛

 Incremental SCCs in each auxiliary graph

• 2009 & 2016 – Bender, Fineman, Gilbert, Tarjan:

• 𝑂 𝑚min{ 𝑚, 𝑛2/3}

ICALP 2016, Rome

Combining things…

• Many instances of the Incremental SCCs algorithm
• Vertices can move across auxiliary graphs
• Auxiliary graphs can merge
• …

Concluding remarks

Results:

• Incremental 𝑂(𝑚𝑛) algorithm for maintaining the pairwise 2-edge-
connectivity in directed graphs.

• Answer queries in 𝑶(𝟏) time, whether two vertices are 2-edge-
connected. If the two vertices are not 2-edge-connected, we return an
edge that separates them.

Open problems:

• Can we maintain incrementally the 2-vertex-connected blocks?

• Decremental? Fully dynamic?

ICALP 2016, Rome

Concluding remarks

ICALP 2016, Rome
Thank you!

Results:

• Incremental 𝑂(𝑚𝑛) algorithm for maintaining the pairwise 2-edge-
connectivity in directed graphs.

• Answer queries in 𝑶(𝟏) time, whether two vertices are 2-edge-
connected. If the two vertices are not 2-edge-connected, we return an
edge that separates them.

Open problems:

• Can we maintain incrementally the 2-vertex-connected blocks?

• Decremental? Fully dynamic?

