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Let  𝐺 = (𝑉, 𝐸) be a undirected graph.
• 𝐺 is connected if there is a path between any two 

vertices.
• The connected components of  𝐺 are its maximal 

connected subgraphs.
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By Menger’s theorem, two vertices are 2-edge-
connected iff the removal of any bridge leaves them in 
the same connected component.

Two vertices are 2-edge-connected if there are two 
edge-disjoint paths between them

The 2-edge-connected blocks of G are its maximal 
subsets 𝐵 ⊆ 𝑉 s.t. 𝑢 and 𝑣 are 2-edge-connected
∀𝑢, 𝑣 ∈ 𝐵

 𝑂(𝑚 + 𝑛) time algorithm [Tarjan 1972]
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Let  𝐺 = (𝑉, 𝐸) be a directed graph. 
• 𝐺 is strongly connected if there is a directed path 

from each vertex to every other vertex.
• The strongly connected components of  𝐺 are its 

maximal strongly connected subgraphs.
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Let  𝐺 = 𝑉, 𝐸 be a strongly connected directed
graph.
• An edge  𝑒 ∈ 𝐸 is a strong bridge if its removal 

increases the strongly connected components of  𝐺.
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By Menger’s Theorem, vertices 𝑢 and  𝑣 are 2-edge 
connected if and only if the removal of any strong bridge 
leaves them in same strongly connected component.

Vertices  𝑢 and  𝑣 are 2-edge connected if there are 
two edge-disjoint paths from  𝑢 to 𝑣 and two edge-
disjoint paths from  𝑣 to 𝑢.
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By Menger’s Theorem, vertices 𝑢 and  𝑣 are 2-edge 
connected if and only if the removal of any strong bridge 
leaves them in same strongly connected component.

Vertices  𝑢 and  𝑣 are 2-edge connected if there are 
two edge-disjoint paths from  𝑢 to 𝑣 and two edge-
disjoint paths from  𝑣 to 𝑢.

A 2-edge-connected block of  𝐺 is a maximal subset  
𝐵 ⊆ 𝑉 s. t. 𝑢 and  𝑣 are 2-edge connected for all  
𝑢, 𝑣 ∈ 𝐵.

 𝑂(𝑚 + 𝑛) time algorithm 
[Georgiadis, Italiano, Laura, P. 2015]
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Problem definition

Graph + data 
structure

What are the 2-
edge-connected 

blocks in 𝐺

{𝑎, 𝑏, 𝑑}, {𝑐, 𝑒}, {𝑓}
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Problem definition

Graph + data 
structure

Goal: 
Update time faster that recomputing
Fast query time
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Dynamic graph algorithms

Problem Undirected graphs Directed graphs

Connectivity/
Transitive closure

Yes Yes 

Connected components/
Strongly connected 

components

Yes Yes

APSP Yes Yes

DFS tree Yes (only on DAGs)

MST Yes ?

2-edge-connectivity Yes ?

2-vertex-connectivity Yes ?
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Simple-minded solutions

Never update

Always update

Update time Query time

𝑂(1) per insertion 𝑂(𝑚 + 𝑛)

𝑂(𝑚 + 𝑛) per insertion 𝑂(1)
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Our algorithm

Update time Query time

𝑂(1) per insertion 𝑂(𝑚 + 𝑛)

𝑂(𝑚 + 𝑛) per insertion 𝑂(1)

𝑂(𝑚𝑛) total time 𝑂(1)Our algorithm

Never update

Always update
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High-level idea

Dominator tree

2-edge-
connected 

blocks

𝑂 𝑛 time
Labeling algorithm  

Auxiliary components 
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𝑑𝑜𝑚 𝑤 = set of vertices that dominate 𝑤

𝑣 dominates 𝑤 if all paths from  𝑠 to  𝑤 contain  𝑣

𝑠

𝑣

𝑤

Dominators

Flow graph  𝐺 𝑠 = (𝑉, 𝐴, 𝑠) :  all vertices are reachable from start vertex  𝑠



𝑣 dominates 𝑤 if all paths from  𝑠 to  𝑤 contain 𝑣

Dominators

𝐷(𝑠) = dominator tree of  𝐺(𝑠)𝐺(𝑠)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑠

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 = 𝑑(𝑔)

𝑔
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Dominators

𝐷(𝑠) = dominator tree of  𝐺(𝑠)

O(𝑚𝑎(𝑚, 𝑛))-time algorithm:  [Lengauer and Tarjan ’79]
O(𝑚 + 𝑛)-time algorithms:

[Alstrup, Harel, Lauridsen, and Thorup ‘97]

𝐺(𝑠)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑠

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 = 𝑑(𝑔)

𝑔

𝑣 dominates 𝑤 if all paths from  𝑠 to  𝑤 contain 𝑣



Exploiting dominator tree

𝑠

𝑎
𝑏 𝑐

𝑑 𝑒

𝑓

𝑔
ℎ

𝑖

𝑚

𝑘 𝑙
𝑗

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

ICALP 2016, Rome



Exploiting dominator tree

𝑠

𝑎
𝑏 𝑐

𝑑 𝑒

𝑓

𝑔
ℎ

𝑖

𝑚

𝑘 𝑙
𝑗

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

• All paths from  𝑠 to  𝑐 contain 𝑙, 𝑓, 𝑑

ICALP 2016, Rome



Exploiting dominator tree

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

• All paths from  𝑠 to  𝑐 contain 𝑙, 𝑓, 𝑑
• All paths from  𝑠 to  𝑐 contain the 

strong bridges  𝑠, 𝑙 , 𝑓, 𝑑

ICALP 2016, Rome

𝑠

𝑎
𝑏 𝑐

𝑑 𝑒

𝑓

𝑔
ℎ

𝑖

𝑚

𝑘 𝑙
𝑗



Exploiting dominator tree

• All paths from 𝑠 to  𝑐 contain 𝑙, 𝑓, 𝑑
• All paths from  𝑠 to  𝑐 contain the 

strong bridges  𝑠, 𝑙 , 𝑓, 𝑑
• A strong bridge is the only incoming 

edge to the vertices of its subtree
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Exploiting dominator tree

The dominator tree of the graph provides only partial information.
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𝑎 𝑏
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Exploiting dominator tree

The dominator tree of the graph provides only partial information.
The dominator tree of the reverse graph provides other partial information.
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𝑙

𝑘

𝐷
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𝑠

𝑎 𝑏 𝑐 𝑑

𝑓

𝑒
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𝑔 𝑘 𝑙

ℎ

𝑚

𝑖 𝑗
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Lemma [Georgiadis, Italiano, P.]: Two vertices 𝑢 and 𝑣 are 2-edge-connected iff
• Their nearest bridge 𝑒 in 𝐷 is common and they are not separated in 𝐺 ∖ 𝑒
• Their nearest bridge 𝑒 in 𝐷𝑅 is common and they are not separated in 𝐺 ∖ 𝑒
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Lemma [Georgiadis, Italiano, P.]: Two vertices 𝑢 and 𝑣 are 2-edge-connected iff
• Their nearest bridge 𝑒 in 𝐷 is common and they are not separated in 𝐺 ∖ 𝑒
• Their nearest bridge 𝑒 in 𝐷𝑅 is common and they are not separated in 𝐺 ∖ 𝑒

𝑐 and  𝑔 are not 2-edge-connected since they have distinct nearest 
bridges



ICALP 2016, Rome

Exploiting dominator tree

𝑐 and  𝑒 are 2-edge-connected iff they are strongly connected 
in  𝐺 ∖ (𝑓, 𝑑)
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Exploiting dominator tree

𝑓 and  𝑚 are 2-edge-connected iff they are strongly connected 
in  𝐺 ∖ (𝑠, 𝑙) and in  𝐺 ∖ (𝑓, 𝑑)
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Auxiliary components

Bridge decomposition: The forest 
obtained by removing the strong bridges 
from the dominator tree

Lemma: two vertices are 2-edge-
connected only if they are in the same 
tree of the bridge decomposition

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷

𝑚𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ
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Bridge decomposition: The forest 
obtained by removing the strong bridges 
from the dominator tree

Lemma: two vertices are 2-edge-
connected only if they are in the same 
tree of the bridge decomposition
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Auxiliary components

Idea: Encode all the paths that do not use the incoming 
strong bridge between vertices in the same tree of the 
bridge decomposition with an auxiliary graph. 

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace 

the subpath outside with a shortcut edge

𝑟

𝑑(𝑟)

𝑥 𝑦
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Idea: Encode all the paths that do not use the incoming 
strong bridge between vertices in the same tree of the 
bridge decomposition with an auxiliary graph. 

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace 

the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at  𝑟) are 
disconnected by 𝑑 𝑟 , 𝑟 iff they are not strongly 
connected in the auxiliary graph of their tree (in the same 
auxiliary component).
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Auxiliary components

Idea: Encode all the paths that do not use the incoming 
strong bridge between vertices in the same tree of the 
bridge decomposition with an auxiliary graph. 

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace 

the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at  𝑟) are 
disconnected by 𝑑 𝑟 , 𝑟 iff they are not strongly 
connected in the auxiliary graph of their tree (in the same 
auxiliary component).

Algorithm: Two vertices 𝑢 and 𝑣 are 2-edge-connected iff
they are in the same auxiliary component in 𝐺 and 𝐺𝑅.

𝑥 𝑦

𝑟

𝑑(𝑟)
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Auxiliary components

Idea: Encode all the paths that do not use the incoming 
strong bridge between vertices in the same tree of the 
bridge decomposition with an auxiliary graph. 

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace 

the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at  𝑟) are 
disconnected by 𝑑 𝑟 , 𝑟 iff they are not strongly 
connected in the auxiliary graph of their tree (in the same 
auxiliary component).

GOAL: Incrementally maintain the bridge decomposition 
and the auxiliary components.

𝑥 𝑦

𝑟

𝑑(𝑟)
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 Definitions
• 2-edge-connectivity in undirected graphs
• 2-edge-connectivity in directed graphs
• Problems definition
• Known algorithm and our result

 High-level idea
 Basic ingredients

• Dominators
• Auxiliary components

 Tools
 Conclusion
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Tools

 Incremental dominator tree

• 2012 – Georgiadis, Italiano, Laura, Santaroni
• 𝑂 𝑚min{𝑛, 𝑘} + 𝑘𝑛

 Incremental SCCs in each auxiliary graph

• 2009 & 2016 – Bender, Fineman, Gilbert, Tarjan:

• 𝑂 𝑚min{ 𝑚, 𝑛2/3}
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Combining things…

• Many instances of the Incremental SCCs algorithm
• Vertices can move across auxiliary graphs
• Auxiliary graphs can merge
• …



Concluding remarks

Results:

• Incremental 𝑂(𝑚𝑛) algorithm for maintaining the pairwise 2-edge-
connectivity in directed graphs.

• Answer queries in 𝑶(𝟏) time, whether two vertices are 2-edge-
connected. If the two vertices are not 2-edge-connected, we return an 
edge that separates them.

Open problems: 

• Can we maintain incrementally the 2-vertex-connected blocks?

• Decremental? Fully dynamic?
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Thank you!

Results:

• Incremental 𝑂(𝑚𝑛) algorithm for maintaining the pairwise 2-edge-
connectivity in directed graphs.

• Answer queries in 𝑶(𝟏) time, whether two vertices are 2-edge-
connected. If the two vertices are not 2-edge-connected, we return an 
edge that separates them.

Open problems: 

• Can we maintain incrementally the 2-vertex-connected blocks?

• Decremental? Fully dynamic?


