Incremental 2-Edge-Connectivity In Directed Graphs

Loukas Georgiadis

University of Ioannina
Greece

Giuseppe F. Italiano

University of Rome Tor Vergata Italy Nikos Parotsidis

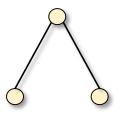
University of Rome Tor Vergata Italy

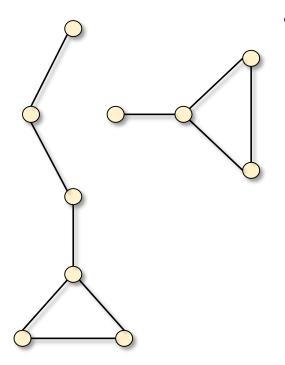
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problem definition
 - Known algorithm and our result
- ➤ High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- > Tools
- Conclusion

Outline

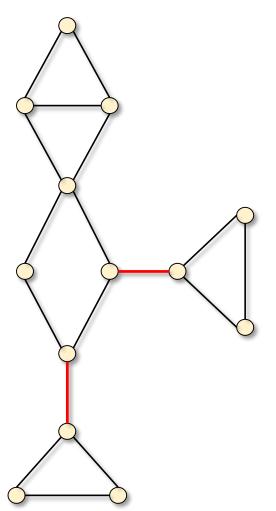
- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problem definition
 - Known algorithm and our result
- > High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- > Tools
- Conclusion





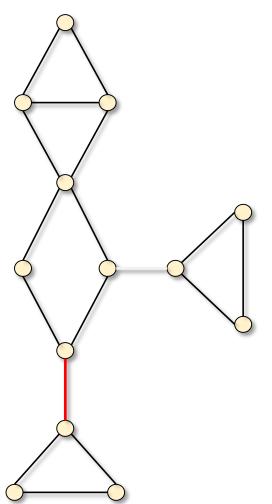
Let G = (V, E) be a **undirected** graph.

- *G* is **connected** if there is a path between any two vertices.
- The **connected components** of *G* are its maximal connected subgraphs.



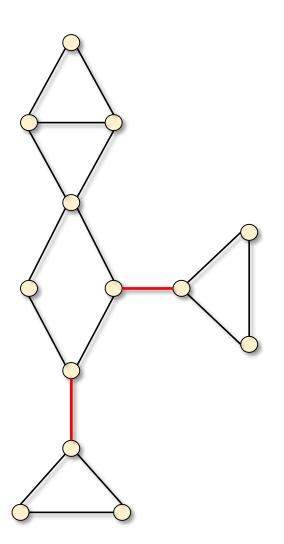
Let G = (V, E) be a **connected undirected** graph.

• An edge is a bridge, if its removal increases the number of connected components.

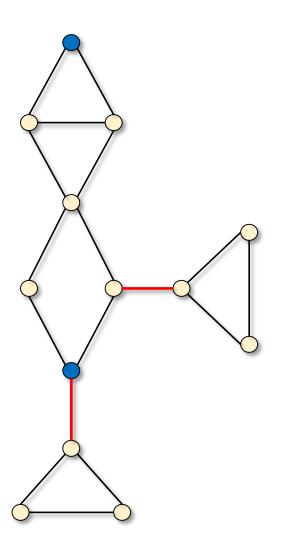


Let G = (V, E) be a **connected undirected** graph.

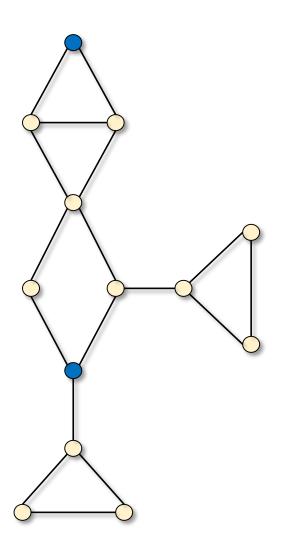
• An edge is a bridge, if its removal increases the number of connected components.



By Menger's theorem, two vertices are 2-edgeconnected iff the removal of any bridge leaves them in the same connected component.

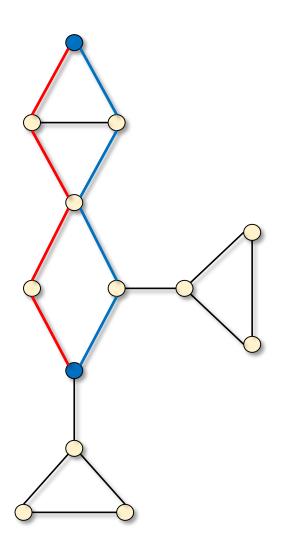


By Menger's theorem, two vertices are 2-edgeconnected iff the removal of any bridge leaves them in the same connected component.



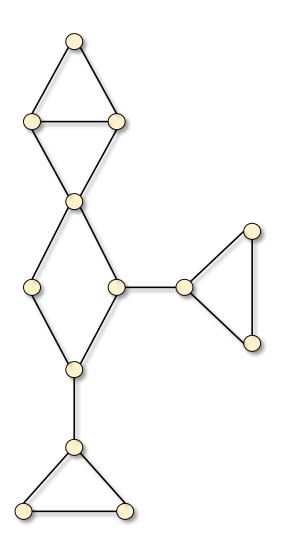
By Menger's theorem, two vertices are 2-edgeconnected iff the removal of any bridge leaves them in the same connected component.

Two vertices are **2-edge-connected** if there are **two edge-disjoint** paths between them.



By Menger's theorem, two vertices are 2-edgeconnected iff the removal of any bridge leaves them in the same connected component.

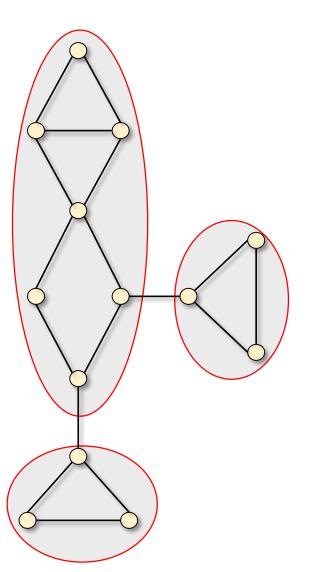
Two vertices are **2-edge-connected** if there are **two edge-disjoint** paths between them.



By Menger's theorem, two vertices are 2-edgeconnected iff the removal of any bridge leaves them in the same connected component.

Two vertices are **2-edge-connected** if there are **two edge-disjoint** paths between them.

The **2-edge-connected blocks** of G are its maximal subsets $B \subseteq V$ s.t. u and v are **2-edge-connected** $\forall u, v \in B$



By Menger's theorem, two vertices are 2-edgeconnected iff the removal of any bridge leaves them in the same connected component.

Two vertices are **2-edge-connected** if there are **two edge-disjoint** paths between them

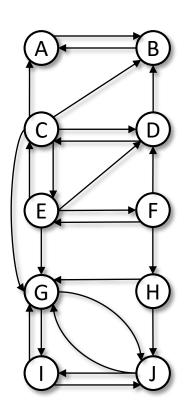
The **2-edge-connected blocks** of G are its maximal subsets $B \subseteq V$ s.t. u and v are **2-edge-connected** $\forall u, v \in B$

 $\triangleright O(m+n)$ time algorithm [Tarjan 1972]

Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problem definition
 - Known algorithm and our result
- > High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- > Tools
- Conclusion

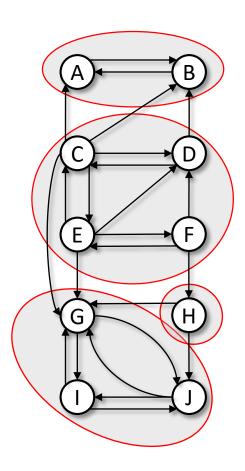
Directed: Strongly connected components



Let G = (V, E) be a **directed** graph.

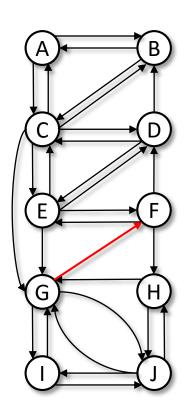
- *G* is **strongly connected** if there is a directed path from each vertex to every other vertex.
- The **strongly connected components** of G are its maximal strongly connected subgraphs.

Directed: Strongly connected components



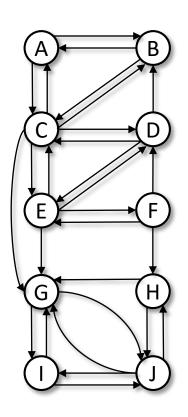
Let G = (V, E) be a **directed** graph.

- *G* is **strongly connected** if there is a directed path from each vertex to every other vertex.
- The strongly connected components of G are its maximal strongly connected subgraphs.



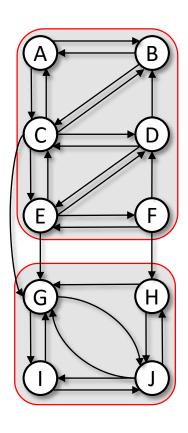
Let G = (V, E) be a **strongly connected directed** graph.

• An edge $e \in E$ is a **strong bridge** if its removal increases the strongly connected components of G.



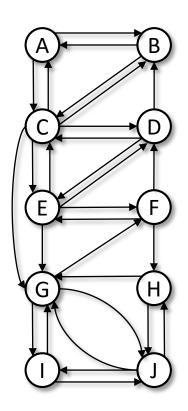
Let G = (V, E) be a **strongly connected directed** graph.

• An edge $e \in E$ is a **strong bridge** if its removal increases the strongly connected components of G.

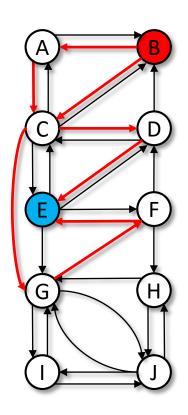


Let G = (V, E) be a **strongly connected directed** graph.

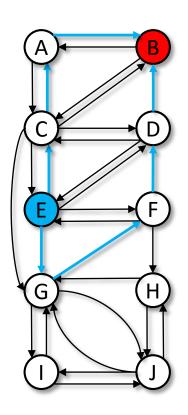
• An edge $e \in E$ is a **strong bridge** if its removal increases the strongly connected components of G.



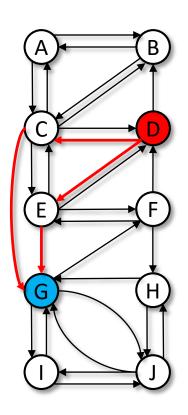
By Menger's Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.



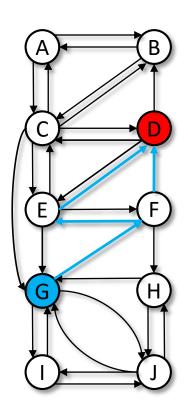
By Menger's Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.



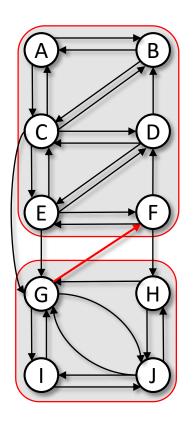
By Menger's Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.



By Menger's Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.



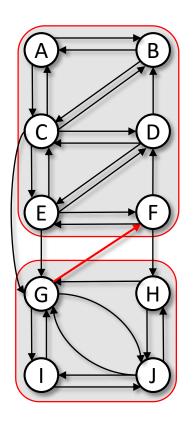
By Menger's Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.



By Menger's Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.

Vertices u and v are **2-edge connected** if there are two edge-disjoint paths from u to v and two edge-disjoint paths from v to v.

A **2-edge-connected block** of G is a maximal subset $B \subseteq V$ s. t. u and v are **2-edge connected** for all $u, v \in B$.



By Menger's Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.

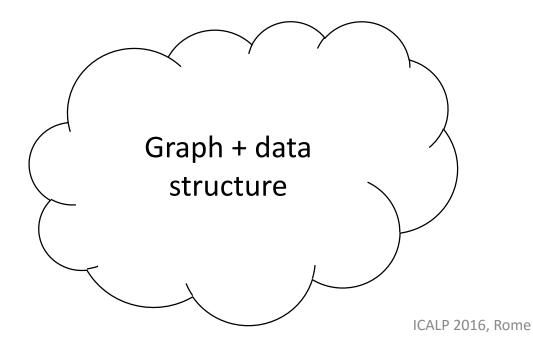
Vertices u and v are **2-edge connected** if there are two edge-disjoint paths from u to v and two edge-disjoint paths from v to v.

A **2-edge-connected block** of G is a maximal subset $B \subseteq V$ s. t. u and v are **2-edge connected** for all $u, v \in B$.

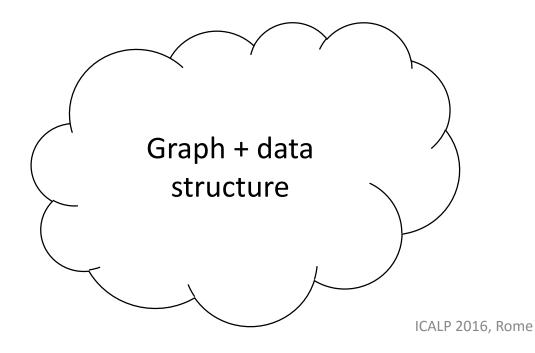
 \triangleright O(m+n) time algorithm [Georgiadis, Italiano, Laura, P. 2015]

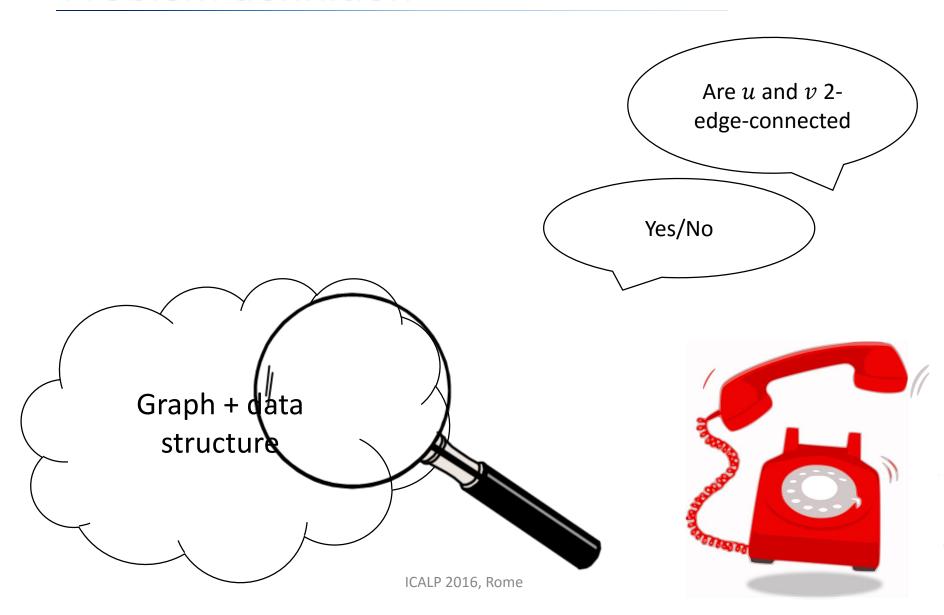
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problem definition
 - Known algorithm and our result
- > High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- > Tools
- Conclusion

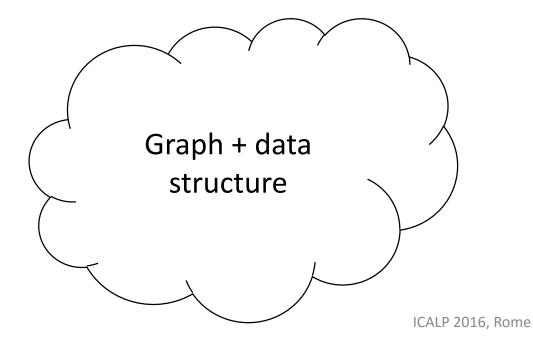


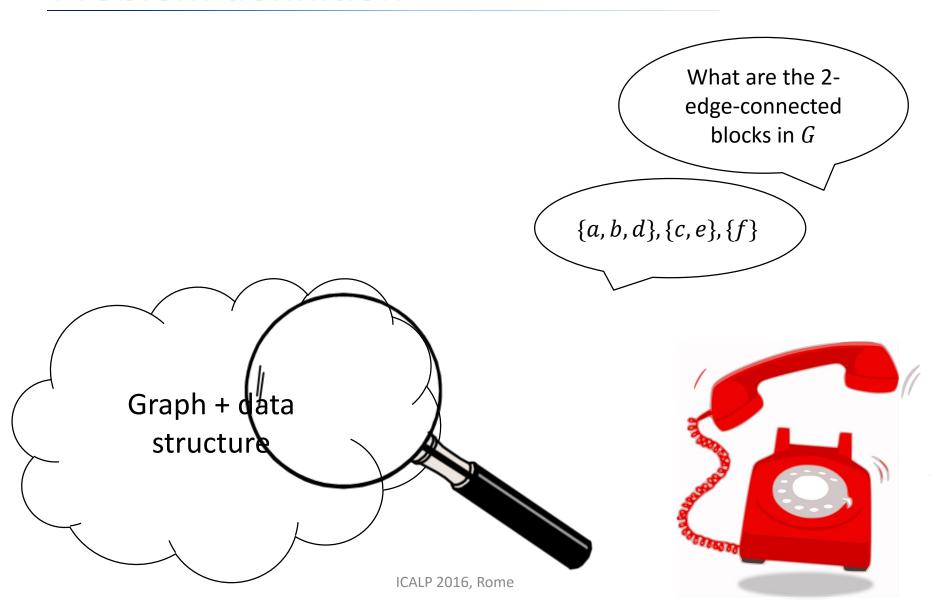
Are u and v 2-edge-connected

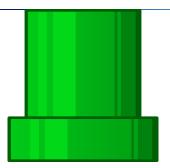


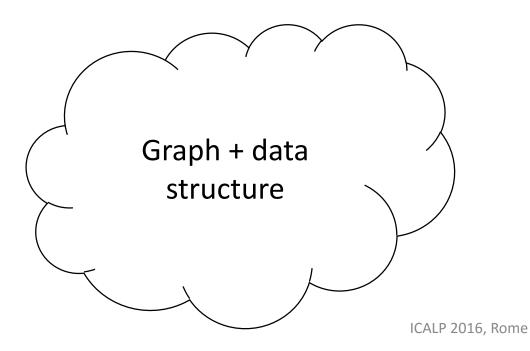


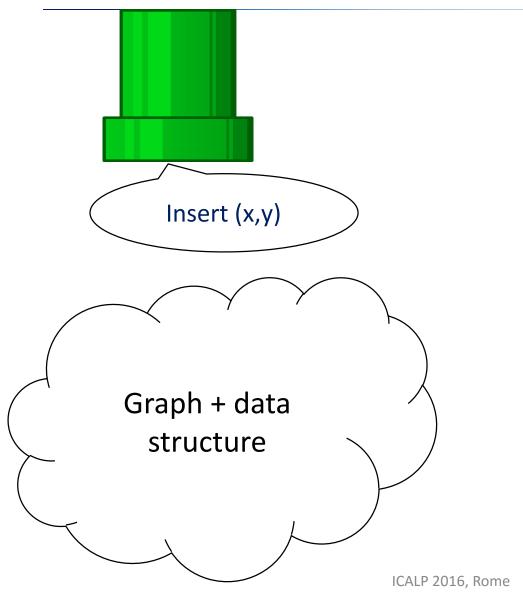
What are the 2-edge-connected blocks in *G*

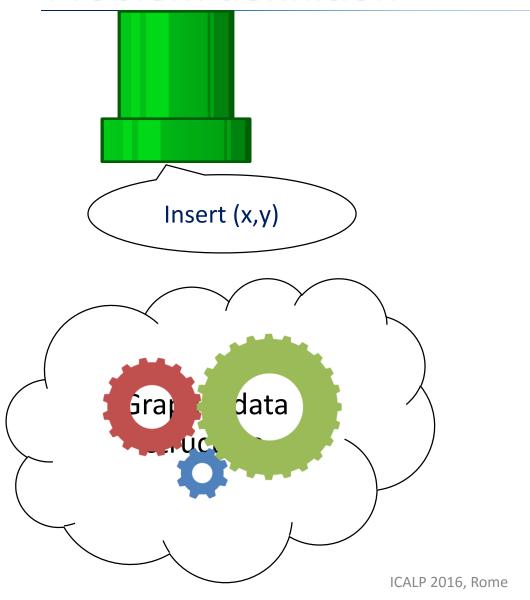


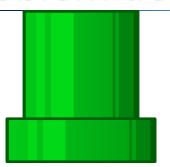




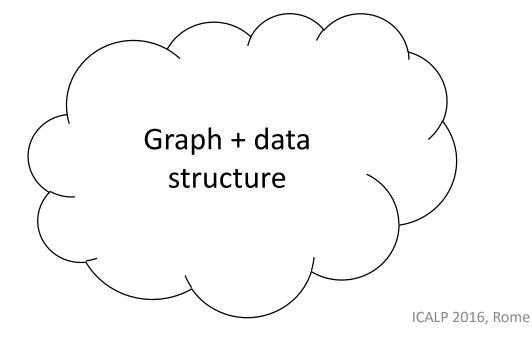


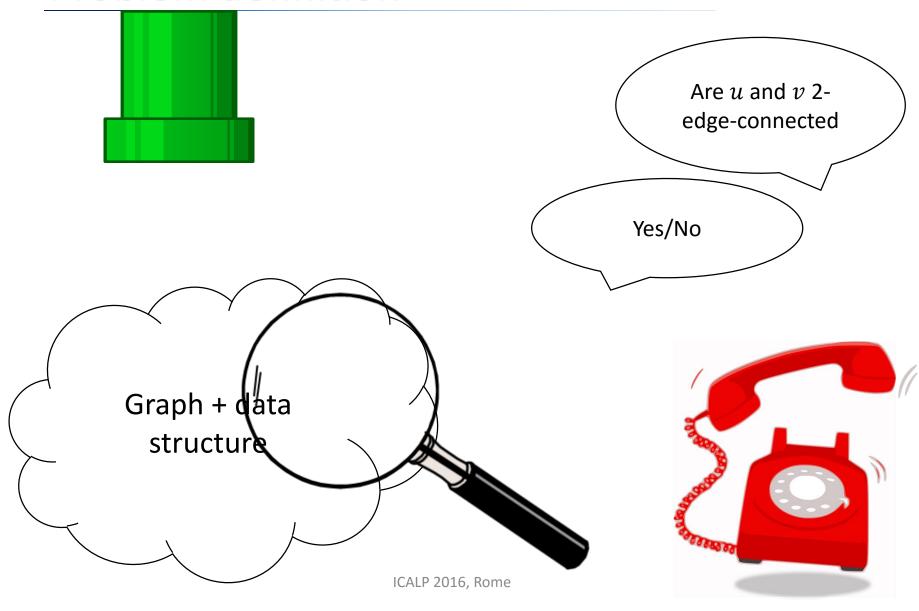




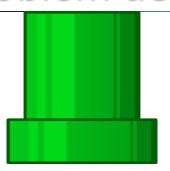


Are u and v 2-edge-connected



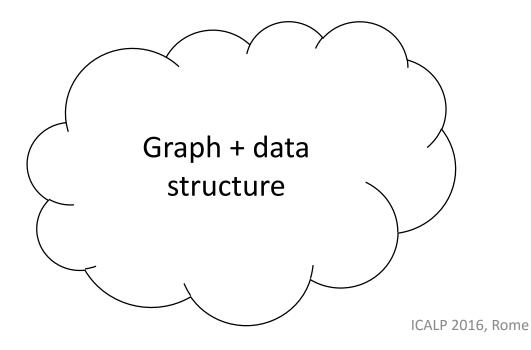


Problem definition



Goal:

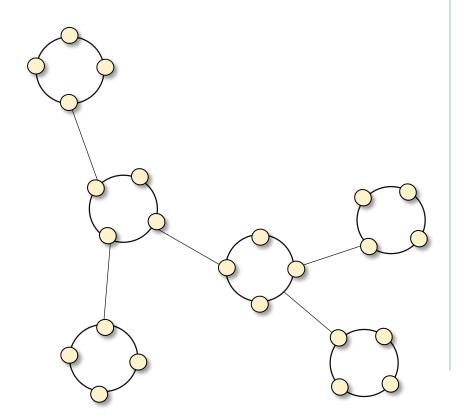
Update time faster that recomputing Fast **query time**



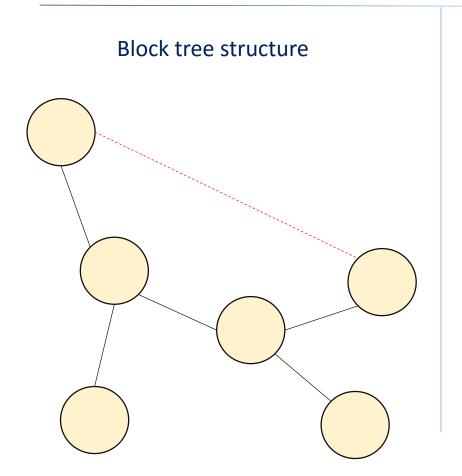
Dynamic graph algorithms

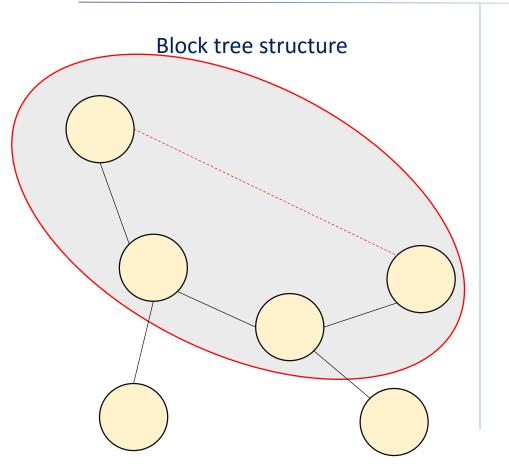
Problem	Undirected graphs	Directed graphs
Connectivity/ Transitive closure	Yes	Yes
Connected components/ Strongly connected components	Yes	Yes
APSP	Yes	Yes
DFS tree	Yes	(only on DAGs)
MST	Yes	?
2-edge-connectivity	Yes	?
2-vertex-connectivity	Yes	?

Block tree structure

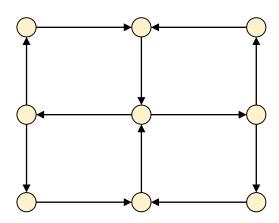


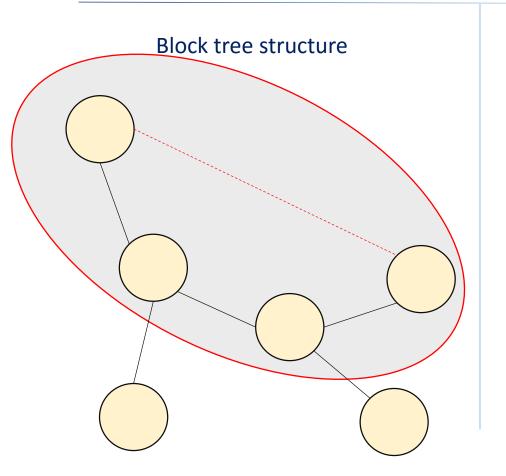
Block tree structure



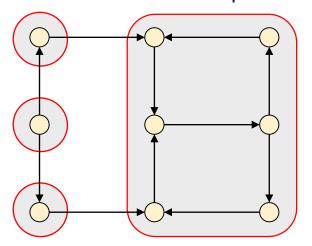


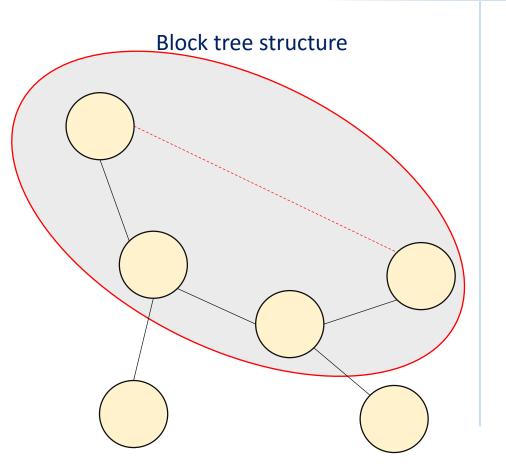
No tree structure is possible



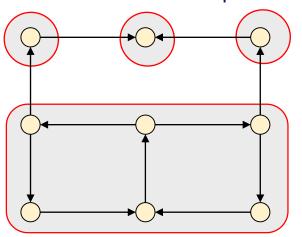


No tree structure is possible





No tree structure is possible



Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problems definition
 - Known algorithm and our result
- > High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- > Tools
- Conclusion

Simple-minded solutions

	Update time	Query time
Never update	O(1) per insertion	O(m+n)
Always update	O(m+n) per insertion	0(1)

Our algorithm

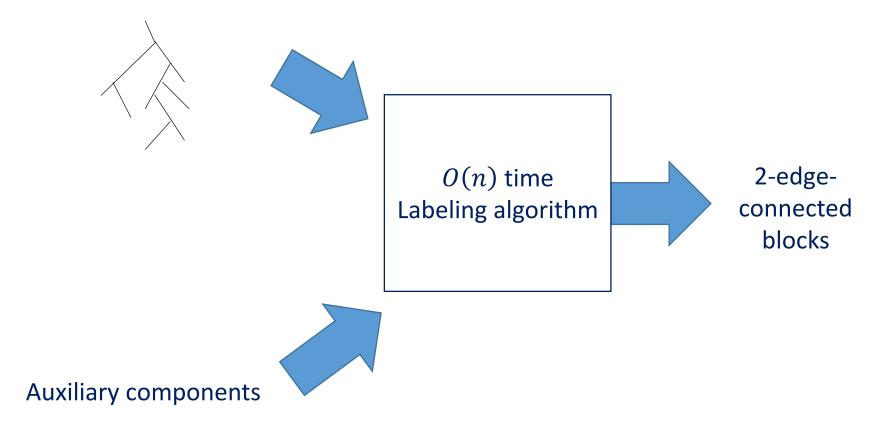
	Update time	Query time
Never update	O(1) per insertion	O(m+n)
Always update	O(m+n) per insertion	0(1)
Our algorithm	O(mn) total time	0(1)

Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problems definition
 - Known algorithm and our result
- ➤ High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- > Tools
- Conclusion

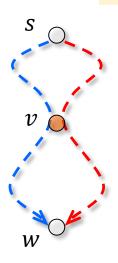
High-level idea

Dominator tree



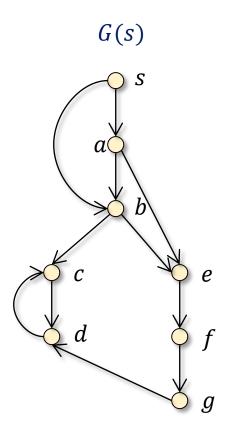
Flow graph G(s) = (V, A, s): all vertices are reachable from start vertex s

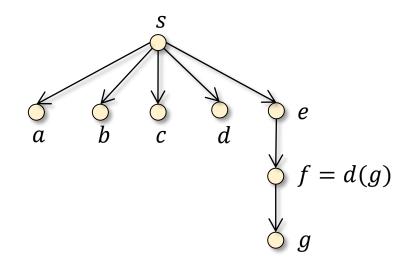
v dominates w if all paths from s to w contain v



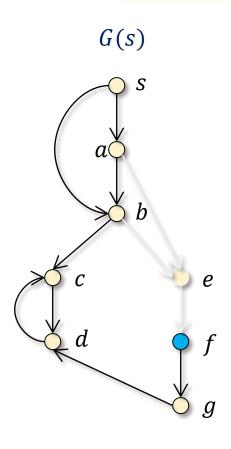
dom(w) = set of vertices that dominate w

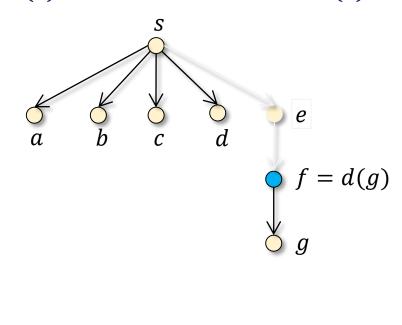
v dominates w if all paths from s to w contain v





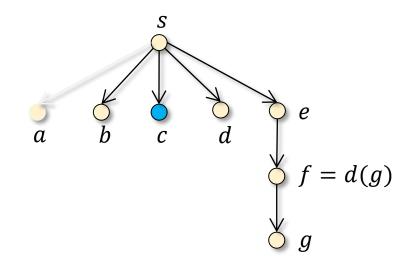
v dominates w if all paths from s to w contain v



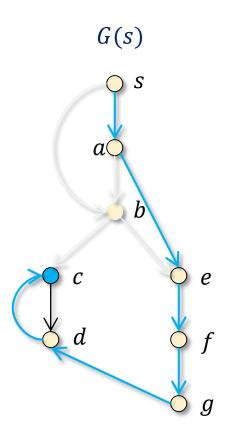


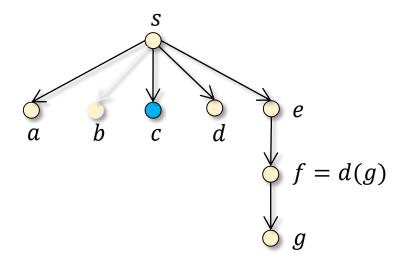
v dominates w if all paths from s to w contain v



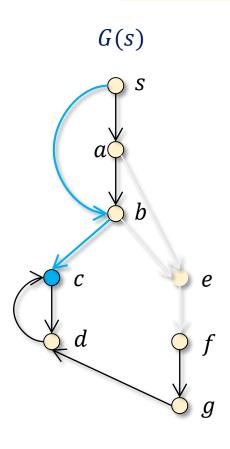


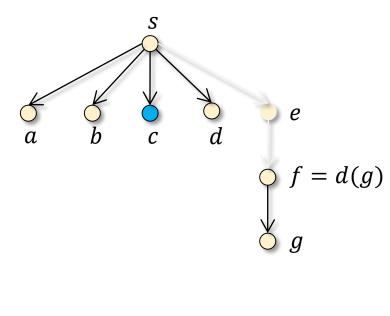
v dominates w if all paths from s to w contain v



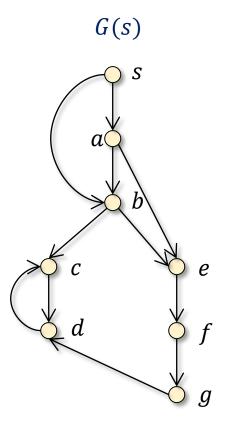


v dominates w if all paths from s to w contain v

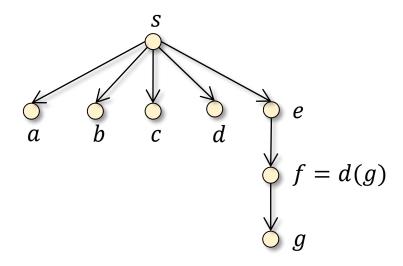




v dominates w if all paths from s to w contain v

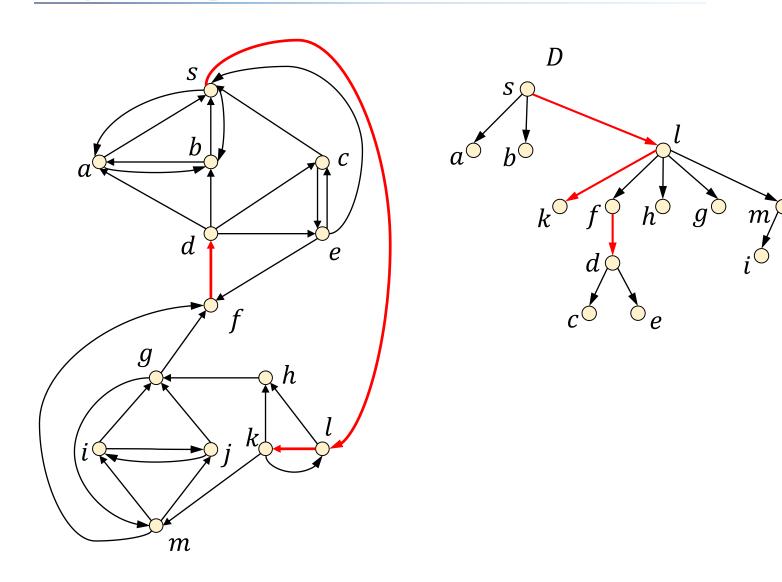


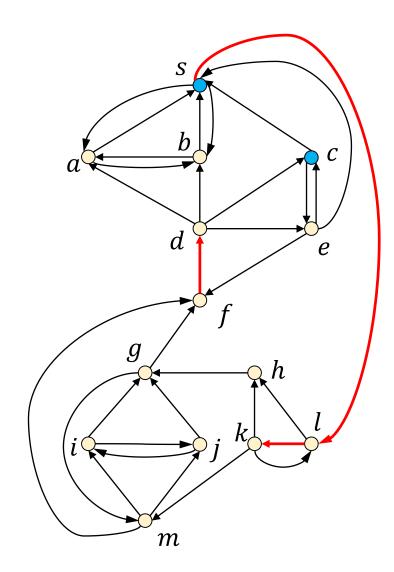
D(s) = dominator tree of G(s)

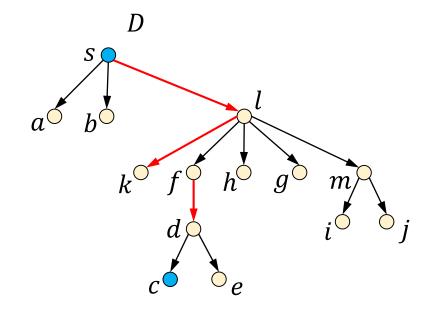


O(ma(m,n))-time algorithm: [Lengauer and Tarjan '79] O(m+n)-time algorithms:

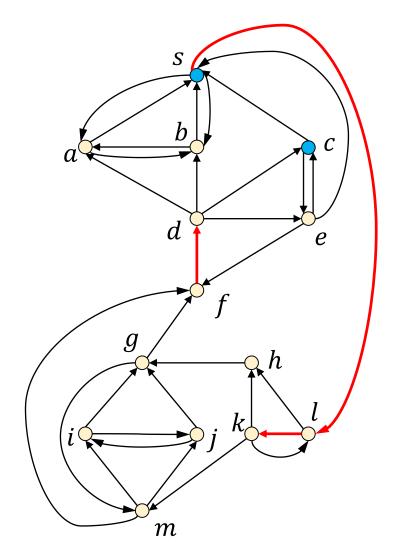
[Alstrup, Harel, Lauridsen, and Thorup '97]

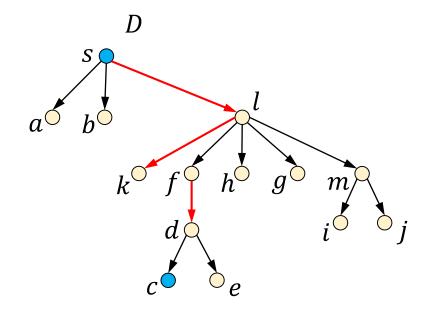




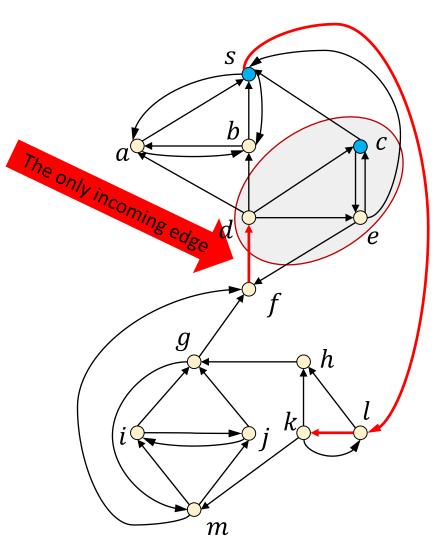


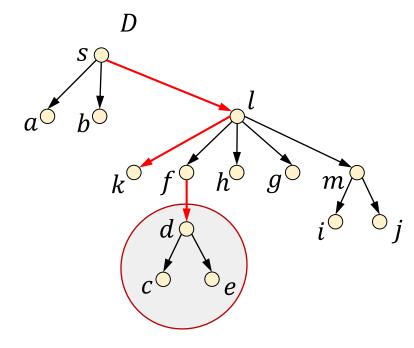
• All paths from s to c contain l, f, d



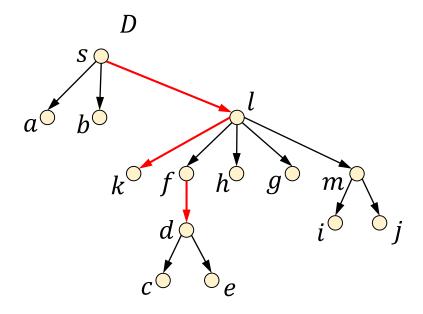


- All paths from s to c contain l, f, d
- All paths from s to c contain the strong bridges (s, l), (f, d)

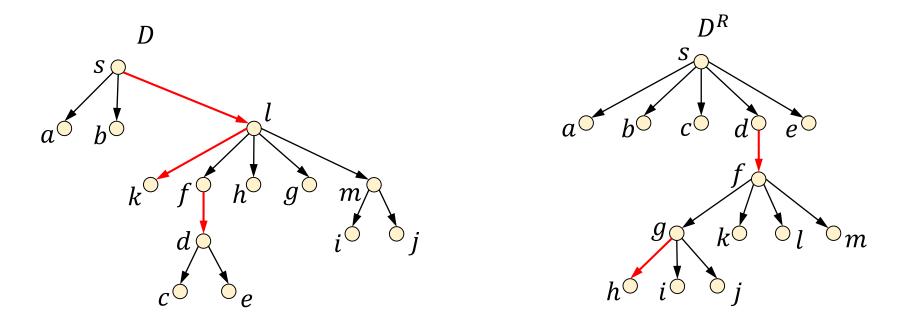




- All paths from s to c contain l, f, d
- All paths from s to c contain the strong bridges (s, l), (f, d)
- A **strong bridge** is the only incoming edge to the vertices of its subtree

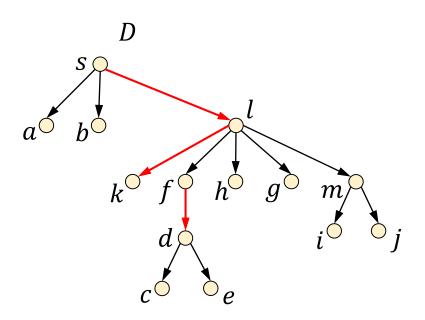


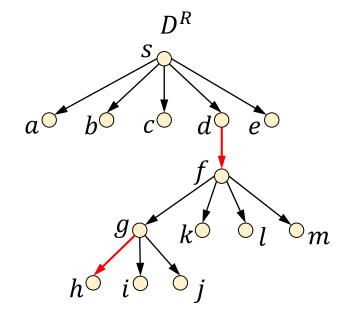
The dominator tree of the graph provides only partial information.



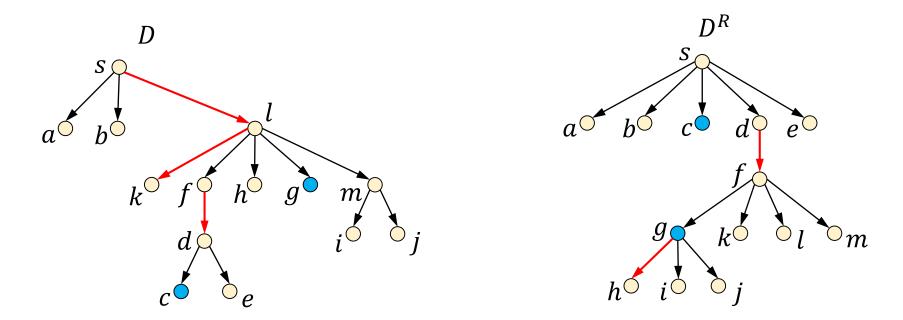
The **dominator tree** of the graph provides only partial information.

The **dominator tree of the reverse graph** provides **other** partial information.



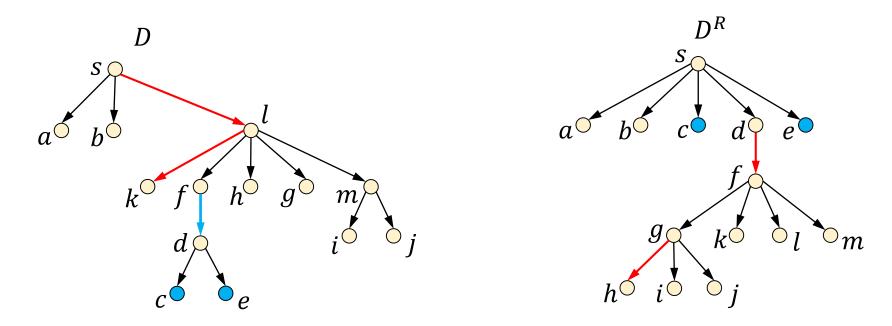


- Their **nearest bridge** e in D is common and they are not separated in $G \setminus e$
- Their **nearest bridge** e in D^R is common and they are not separated in $G\setminus e$



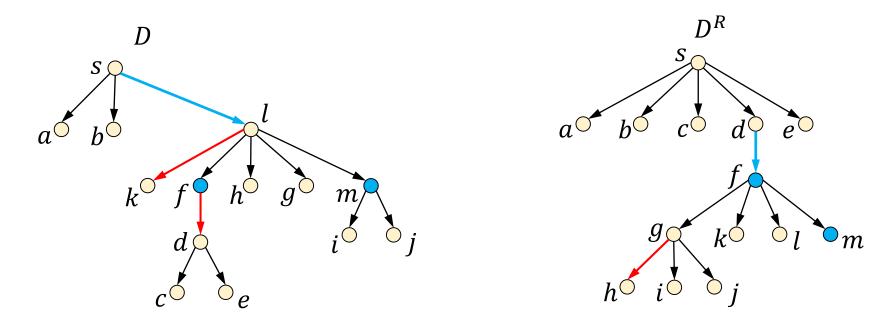
c and g are not 2-edge-connected since they have distinct nearest bridges

- Their **nearest bridge** e in D is common and they are not separated in $G \setminus e$
- Their **nearest bridge** e in D^R is common and they are not separated in $G \setminus e$



c and e are 2-edge-connected **iff** they are strongly connected in $G \setminus (f, d)$

- Their **nearest bridge** e in D is common and they are not separated in $G \setminus e$
- Their **nearest bridge** e in D^R is common and they are not separated in $G\setminus e$

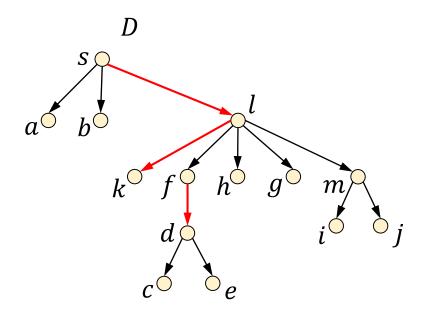


f and m are 2-edge-connected **iff** they are strongly connected in $G \setminus (s, l)$ and in $G \setminus (f, d)$

- Their **nearest bridge** e in D is common and they are not separated in $G \setminus e$
- Their **nearest bridge** e in D^R is common and they are not separated in $G \setminus e$

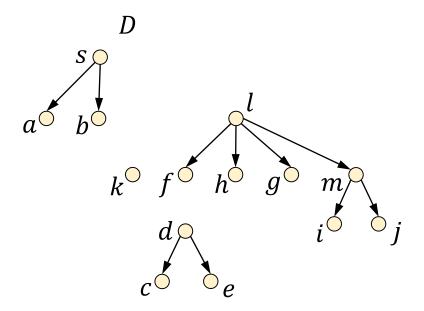
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problems definition
 - Known algorithm and our result
- > High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- > Tools
- Conclusion



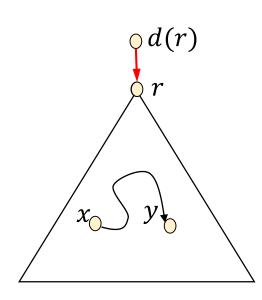
Bridge decomposition: The forest obtained by removing the strong bridges from the dominator tree

Lemma: two vertices are 2-edgeconnected **only if** they are in the same tree of the bridge decomposition



Bridge decomposition: The forest obtained by removing the strong bridges from the dominator tree

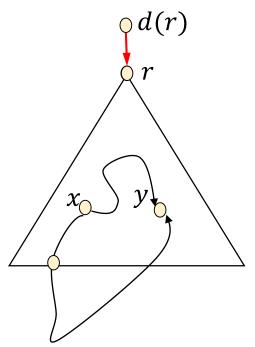
Lemma: two vertices are 2-edgeconnected **only if** they are in the same tree of the bridge decomposition



Idea: Encode all the paths that do not use the incoming strong bridge between **vertices in the same tree** of the bridge decomposition with an **auxiliary graph**.

Construction:

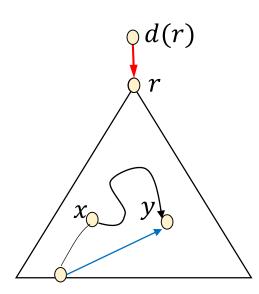
- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge



Idea: Encode all the paths that do not use the incoming strong bridge between **vertices in the same tree** of the bridge decomposition with an **auxiliary graph**.

Construction:

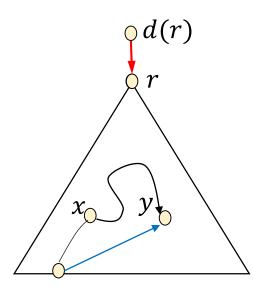
- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge



Idea: Encode all the paths that do not use the incoming strong bridge between **vertices in the same tree** of the bridge decomposition with an **auxiliary graph**.

Construction:

- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge

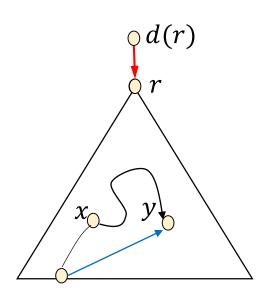


Idea: Encode all the paths that do not use the incoming strong bridge between **vertices in the same tree** of the bridge decomposition with an **auxiliary graph**.

Construction:

- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at r) are **disconnected** by (d(r), r) **iff** they **are not** strongly connected in the auxiliary graph of their tree (in the same auxiliary component).



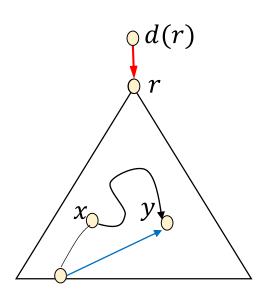
Idea: Encode all the paths that do not use the incoming strong bridge between **vertices in the same tree** of the bridge decomposition with an **auxiliary graph**.

Construction:

- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at r) are **disconnected** by (d(r),r) **iff** they **are not** strongly connected in the auxiliary graph of their tree (in the same auxiliary component).

Algorithm: Two vertices u and v are 2-edge-connected iff they are in the same auxiliary component in G and G^R .



Idea: Encode all the paths that do not use the incoming strong bridge between **vertices in the same tree** of the bridge decomposition with an **auxiliary graph**.

Construction:

- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at r) are **disconnected** by (d(r), r) **iff** they **are not** strongly connected in the auxiliary graph of their tree (in the same auxiliary component).

GOAL: Incrementally maintain the bridge decomposition and the auxiliary components.

Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problems definition
 - Known algorithm and our result
- > High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- > Tools
- > Conclusion

Tools

- Incremental dominator tree
 - 2012 Georgiadis, Italiano, Laura, Santaroni
 - $O(m \min\{n, k\} + kn)$
- Incremental SCCs in each auxiliary graph
 - 2009 & 2016 Bender, Fineman, Gilbert, Tarjan:
 - $O(m \min{\{\sqrt{m}, n^{2/3}\}})$

Combining things...

- Many instances of the Incremental SCCs algorithm
- Vertices can move across auxiliary graphs
- Auxiliary graphs can merge

•

Concluding remarks

Results:

- Incremental O(mn) algorithm for maintaining the pairwise **2-edge-connectivity** in directed graphs.
- Answer queries in O(1) time, whether two vertices are 2-edge-connected. If the two vertices are not 2-edge-connected, we return an edge that separates them.

Open problems:

- Can we maintain incrementally the 2-vertex-connected blocks?
- Decremental? Fully dynamic?

Concluding remarks

Results:

- Incremental O(mn) algorithm for maintaining the pairwise **2-edge-connectivity** in directed graphs.
- Answer queries in O(1) time, whether two vertices are 2-edge-connected. If the two vertices are not 2-edge-connected, we return an edge that separates them.

Open problems:

- Can we maintain incrementally the 2-vertex-connected blocks?
- Decremental? Fully dynamic?

