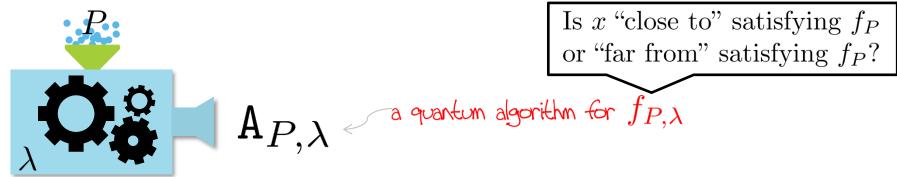
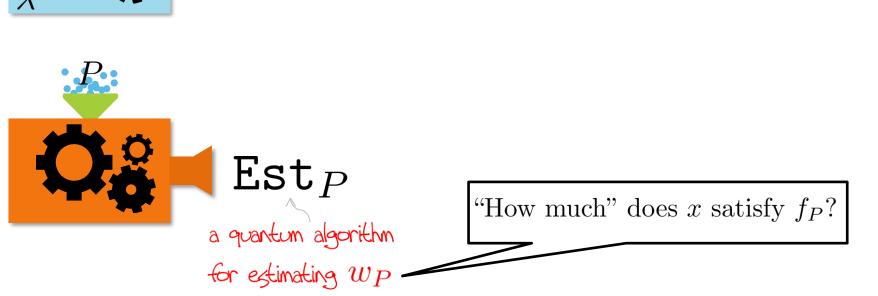
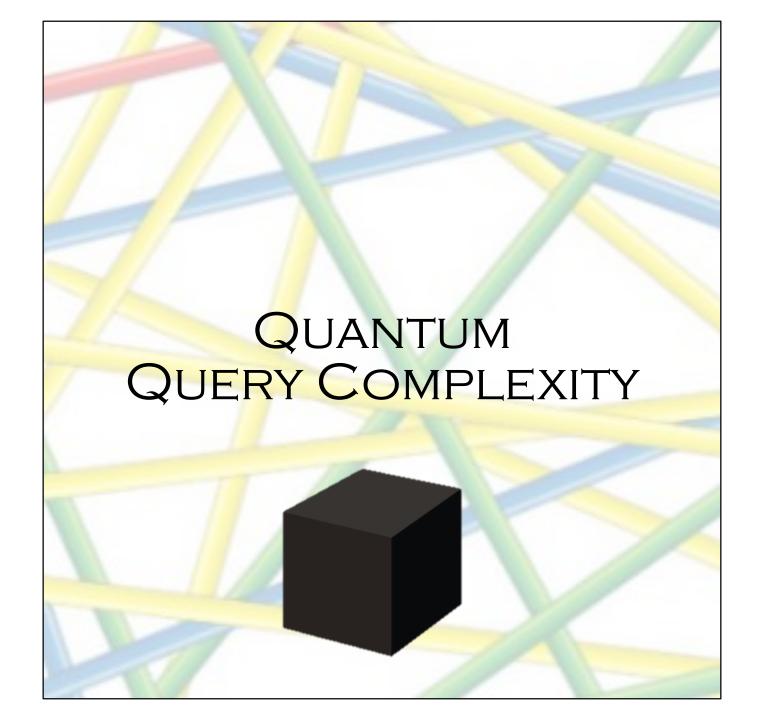


USING APPROXIMATE SPAN PROGRAMS.







QUANTUM QUERY COMPLEXITY

 $x \in \{0, 1\}^n$

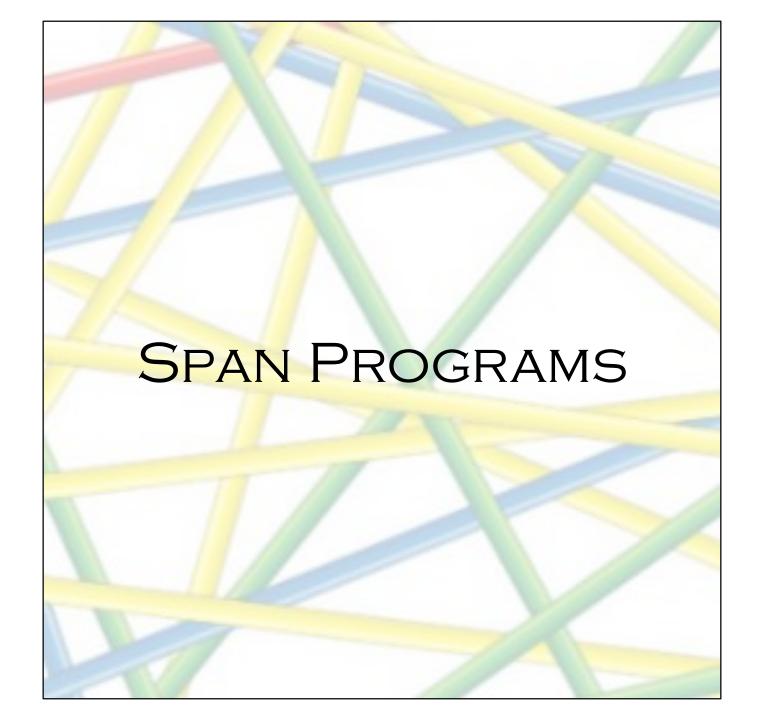
quantum query complexity of an algorithm:

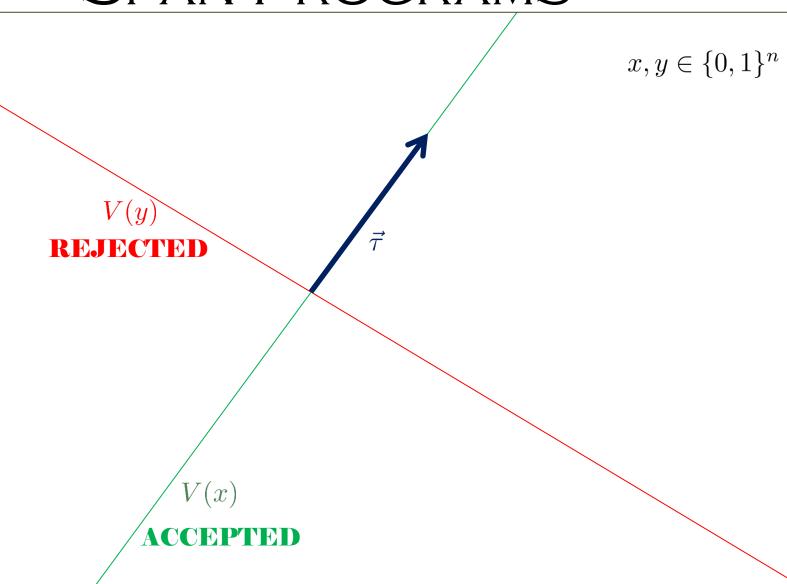
Q(A) = number of oracle calls made by A

(bounded error) quantum query complexity of a function:

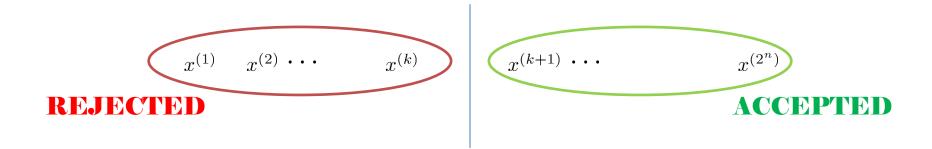
 $Q(f) = \text{minimum } Q(\mathcal{A}) \text{ over all bounded error algorithms for } f, \mathcal{A}$

bounded error: for any input, algorithm must be correct with probability $\geq \frac{2}{3}$





$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}\$$

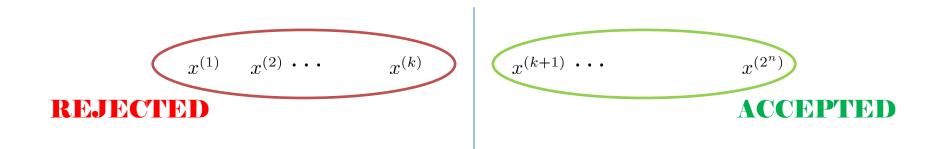


$$f_P(x) = \begin{cases} 1 & \text{if } x \text{ is accepted by the span program} \\ 0 & \text{if } x \text{ is rejected by the span program} \end{cases}$$

The span program decides f_P .

Theorem: For any span program P, there is a quantum algorithm that decides f_P in query complexity equal to the span program complexity. [Reichardt '09]

$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}$$



x is accepted \Leftrightarrow x has a positive witness \vec{w}

positive witness size of x: $w_+(x) = \min_{\vec{w}} ||\vec{w}||^2$

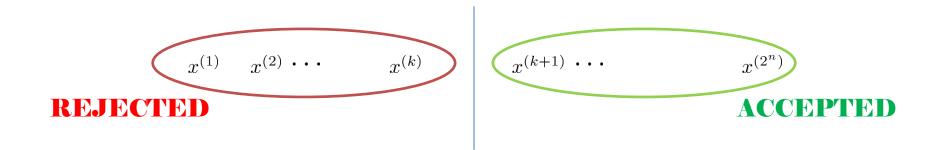
x is rejected \Leftrightarrow x has a negative witness \vec{v}

negative witness size of x: $w_{-}(x) = \min_{\vec{v}} ||\vec{v}||^2$

$$W_{+} = \max_{x} w_{+}(x)$$
 $W_{-} = \max_{x} w_{-}(x)$

Theorem: For any span program P, there is a quantum algorithm that decides f_P in query complexity equal to the $span\ program\ complexity$. [Reichardt '09]

$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}$$



x is accepted \Leftrightarrow x has a positive witness \vec{w}

positive witness size of x: $w_+(x) = \min_{\vec{w}} ||\vec{w}||^2$

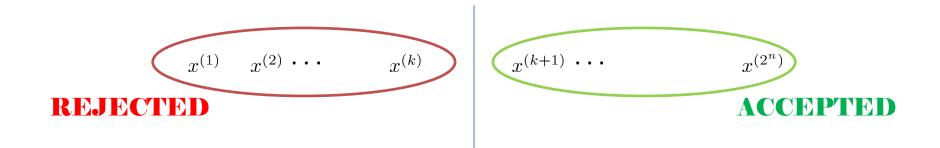
x is rejected \Leftrightarrow x has a negative witness \vec{v}

negative witness size of x: $w_{-}(x) = \min_{\vec{v}} ||\vec{v}||^2$

$$W_{+} = \max_{x} w_{+}(x)$$
 $W_{-} = \max_{x} w_{-}(x)$

Theorem: For any span program P, there is a quantum algorithm that decides f_P in query complexity equal to $O(\sqrt{W_+W_-})$. [Reichardt '09]

$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}$$



x is accepted \Leftrightarrow x has a positive witness \vec{w}

positive witness size of x: $w_+(x) = \min_{\vec{w}} ||\vec{w}||^2$

x is rejected \Leftrightarrow x has a negative witness \vec{v}

negative witness size of x: $w_{-}(x) = \min_{\vec{v}} ||\vec{v}||^2$

$$D \subseteq \{0,1\}^n$$
 $W_+ = \max_{x \in D} w_+(x)$ $W_- = \max_{x \in D} w_-(x)$

Theorem: For any span program P, there is a quantum algorithm that decides $f_P|_D$ in query complexity equal to $O(\sqrt{W_+W_-})$. [Reichardt '09]

$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}$$

ACCEPTED

x is accepted \Leftrightarrow x has a positive witness \vec{w}

positive witness size of x: $w_+(x) = \min_{\vec{w}} ||\vec{w}||^2$

x is rejected \Leftrightarrow x has a negative witness \vec{v}

negative witness size of x: $w_{-}(x) = \min_{\vec{v}} ||\vec{v}||^2$

$$W_{+} = \max_{x} w_{+}(x)$$
 $W_{-} = \max_{x} w_{-}(x)$

$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}$$

ACCEPTED

x is accepted $\Leftrightarrow x$ has a positive witness \vec{w}

positive witness size of x: $w_+(x) = \frac{1}{|x|}$

x is rejected \Leftrightarrow x has a negative witness \vec{v}

negative witness size of x: $w_{-}(x) = \min_{\vec{v}} ||\vec{v}||^2$

$$W_{+} = \max_{x} w_{+}(x)$$
 $W_{-} = \max_{x} w_{-}(x)$

$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}$$

ACCEPTED

x is accepted $\Leftrightarrow x$ has a positive witness \vec{w}

positive witness size of x: $w_+(x) = \frac{1}{|x|}$

x is rejected $\Leftrightarrow x$ has a negative witness \vec{v}

negative witness size of x: $w_{-}(x) = n$

$$W_{+} = \max_{x} w_{+}(x)$$
 $W_{-} = \max_{x} w_{-}(x)$

$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}$$

ACCEPTED

x is accepted $\Leftrightarrow x$ has a positive witness \vec{w}

positive witness size of
$$x$$
: $w_+(x) = \frac{1}{|x|}$

x is rejected $\Leftrightarrow x$ has a negative witness \vec{v}

negative witness size of x: $w_{-}(x) = n$

$$W_{+} = \max_{x} w_{+}(x) = 1$$
 $W_{-} = \max_{x} w_{-}(x)$

$$\{0,1\}^n = \{x^{(1)}, \dots, x^{(2^n)}\}$$

ACCEPTED

x is accepted $\Leftrightarrow x$ has a positive witness \vec{w}

positive witness size of
$$x$$
: $w_+(x) = \frac{1}{|x|}$

x is rejected $\Leftrightarrow x$ has a negative witness \vec{v}

negative witness size of x: $w_{-}(x) = n$

$$W_{+} = \max_{x} w_{+}(x) = 1$$
 $W_{-} = \max_{x} w_{-}(x) = n$

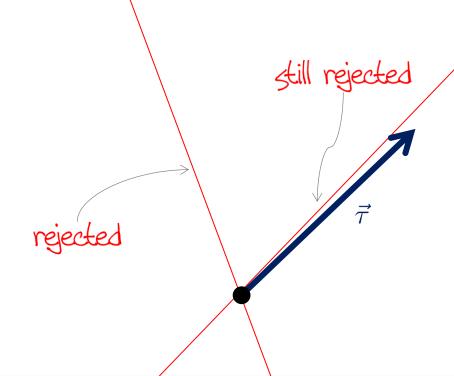
Span program complexity:
$$\sqrt{W_+W_-} = \sqrt{n}$$

SPAN PROGRAMS = BOUNDED ERROR QUANTUM QUERY COMPLEXITY

For any decision problem f:

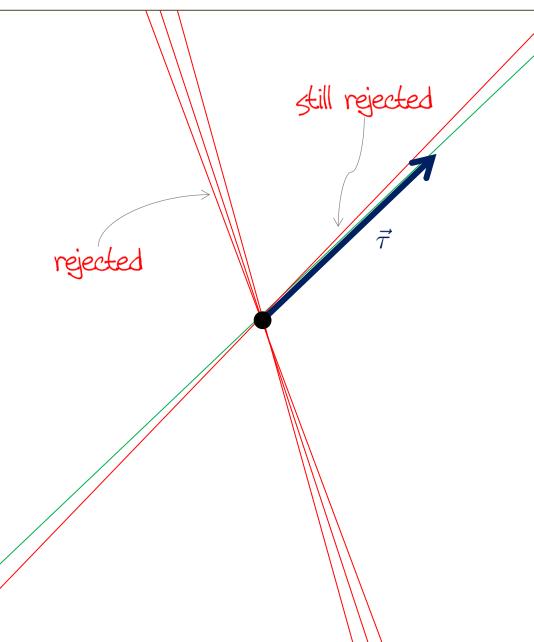
 $\frac{\text{minimum complexity of a}}{\text{span program that decides } f} = \begin{cases} \text{bounded error} \\ \text{quantum query complexity of } f \end{cases}$

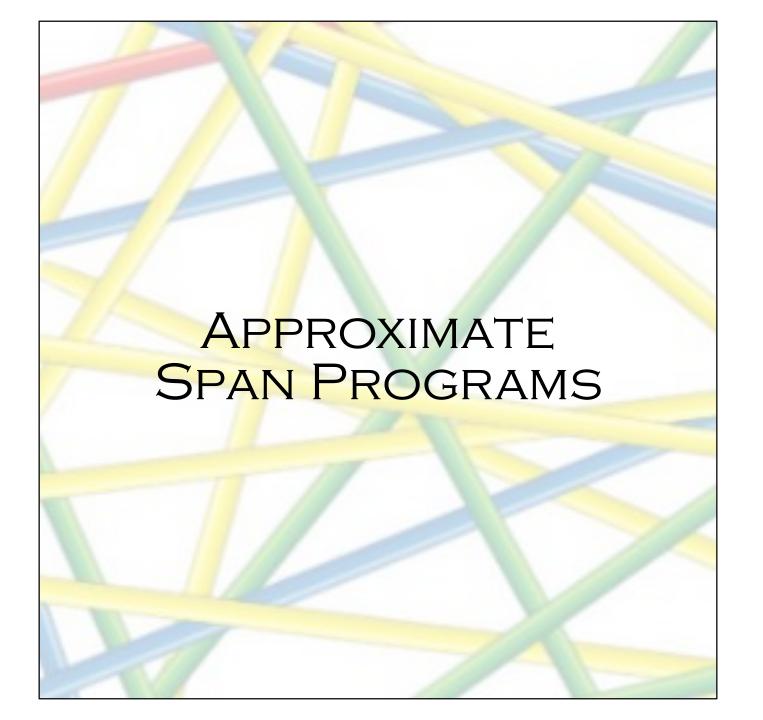
EXACTNESS OF SPAN PROGRAMS



Problem: Span programs want us to exactly hit a target. Quantum algorithms just want us to get close.

EXACTNESS OF SPAN PROGRAMS





Regime 1: span program accepts x if V(x) is close to the target

i.e., accept if x has small positive error

Regime 2: span program rejects x if x has small negative error

V(x) $\vec{ au}$

When should we say that a span program accepts an input?

Regime 1: span program accepts x if V(x) is close to the target

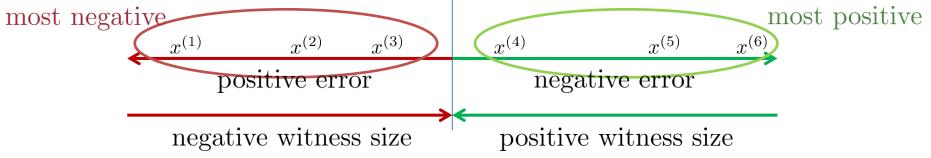
i.e., accept if x has small positive error

 \Leftrightarrow Only reject if x has a small negative witness

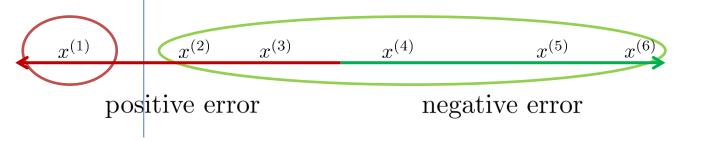
Regime 2: span program rejects x if x has small negative error

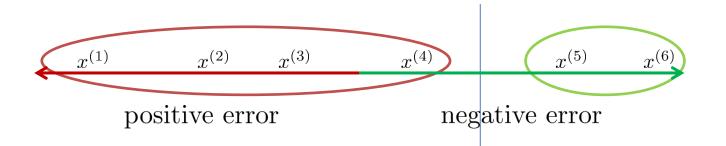
 \Leftrightarrow Only accept if x has a small positive witness

Theorem: positive error of
$$x = \frac{1}{w_{-}(x) = \text{negative witness size of } x}$$
negative error of $x = \frac{1}{w_{+}(x) = \text{positive witness size of } x}$



Approximate Span Program

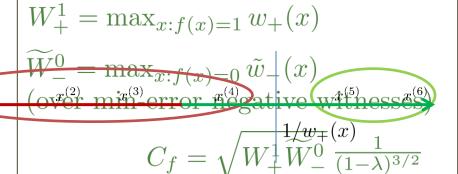


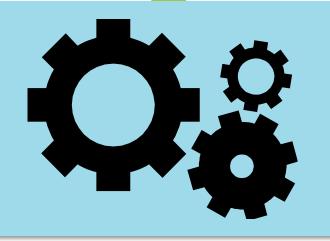


APPROXIMATE SPAN PROGRAM ALGORITHM

A span program approximates f if $\frac{\max_{x:f(x)=1} w_+(x)}{\min_{x:f(x)=0} w_+(x)} < \lambda$ for constant $\lambda < 1$.

Span program that approximates f with complexity C_f





quantum algorithm for f with query complexity C_f

EXAMPLE: GAPPED t-THRESHOLD

$$f(x) = \begin{cases} 1 & \text{if } |x| \ge t \\ 0 & \text{if } |x| \le t/2 \end{cases}$$

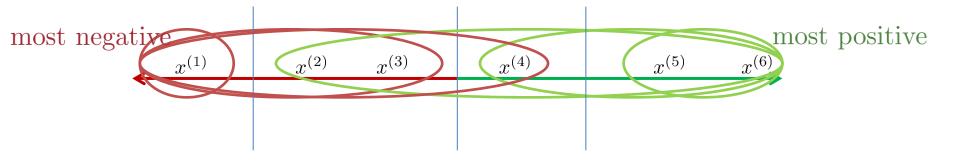
Recall from the span program for OR: $w_{+}(x) = \frac{1}{|x|}$ $w_{-}(x) = n$

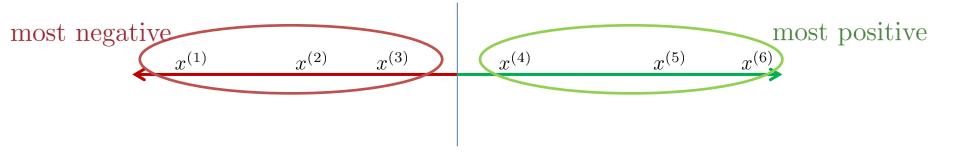
$$\frac{\max_{x:f(x)=1} w_{+}(x)}{\min_{x:f(x)=0} w_{+}(x)} = \frac{\max_{x:|x| \ge t} w_{+}(x)}{\min_{x:|x| < t/2} w_{+}(x)} = \frac{1}{2}$$

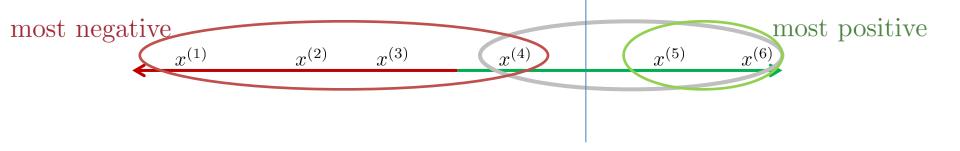
$$W_+^1 := \max_{x:f(x)=1} w_+(x) = \max_{x:|x| \ge t} \frac{1}{|x|} = \frac{1}{t}$$

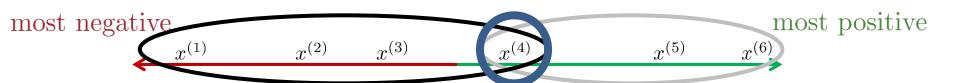
$$\widetilde{W}_{-}^{0} := \max_{x:f(x)=0} \widetilde{w}_{-}(x) = n$$

$$C_f = \sqrt{W_+^1 W_-^0} = \sqrt{n/t}$$









ESTIMATING THE WITNESS SIZE

Quantum algorithm for estimating $w_{+}(x)$ with query complexity $O\left(\frac{1}{\varepsilon^{3/2}}\sqrt{w_{+}(x)\widetilde{W}_{-}}\right)$

EXAMPLE: ESTIMATING |x|

Recall from the span program for OR: $w_{+}(x) = \frac{1}{|x|}$ $\widetilde{W}_{-}^{0} = n$

Quantum query complexity of estimating |x|:

$$\frac{1}{\varepsilon^{3/2}}\sqrt{w_+(x)\widetilde{W}_-} = \frac{1}{\varepsilon^{3/2}}\sqrt{\frac{n}{|x|}}$$
 not optimal

NEW APPLICATION: EFFECTIVE RESISTANCE

Input: G, a graph on [n]; $s, t \in [n]$

Effective resistance between s and t in G:

$$R_{s,t}(G) = \min_{\theta} \sum_{e \in E(G)} \theta(e)^2$$

over unit flows with source s and sink t

Quantum query complexity of estimating $R_{s,t}$: $O\left(\frac{1}{\varepsilon^{3/2}}n\sqrt{R_{s,t}(G)}\right)$

Quantum query complexity est. $R_{s,t}$ when $\lambda_2(G) \geq \mu$: $O\left(\frac{1}{\varepsilon}n\sqrt{\frac{R_{s,t}(G)}{\mu}}\right)$

SUMMARY

- Span programs have been used to design quantum algorithms
- Span programs can be used to design quantum algorithms in two new ways:
 - 1) Larger class of decision problems for each span program
 - 2) Estimation problems
 - No longer restricted to decision problems
 - New applications to estimating effective resistance
- Further applications?

