

WHY MODELS REALLY MATTER FOR SAFETY ASSURANCE

Mario Trapp mario.trapp@iks.fraunhofer.de

THE FUTURE SAFETY-CRITICAL APPS & SERVICES

THE FUTURE CONNECTIVITY

THE FUTURE SYSTEM COLLABORATION

If products, business models, and the underlying software **technology change in a disruptive way**, ...

SAFETY NOW

Assumptions

static systems & context technology-driven failure models determinism & predictability

Methodology & Technology

(monolithic) a-priori assurance conservative worst case assumptions inflexible, "stupid" mechanisms

Presumption

open systems & context behavior-driven failure models uncertainties

Methodology & Technology modular and dynamic assurance dynamic actual case assumptions intelligent, adaptive resilience

SAFETY

THE KEY: MODEL-BASED SAFETY ASSURANCE

MODEL-BASED SAFETY MANAGEMENT

MODEL-BASED SAFETY ENGINEERING

DEAL CASE

One integrated model with different diagrams and viewpoints

A LONG-LASTING PRINCIPLE NEEDS TO BE CHANGED

Broad-spectrum counter-measures

Specific counter-measures

EXAMPLE: SERIOUS CARD PLAY FOR SAFETY ANALYSIS - SCAFE

www.iks.fraunhofer.de

Read as: How could an unintended vehicle acceleration during a standstill in front of a pedestrian crossing in an urban traffic situation endanger pedestrians?

SOME BACKGROUND: THE EIGHT-VARIABLE-MODEL [BASED ON PARNAS' 4-VARIABLE MODEL]

Tremendous, often neglected potential for critical systematic faults!

SOME BACKGROUND: THE EIGHT-VARIABLE-MODEL [BASED ON PARNAS' 4-VARIABLE MODEL]

IDENTIFY ASSUMPTIONS

IDENTIFY FAILURE MODES

MODEL-BASED COVERAGE

CONTINUOUS SAFETY MANAGEMENT

SAFETY MEETS DEVOPS - CONTINUOUS SAFETY MANAGEMENT

Today

Next

KEY TO SUCCESS: MODULARITY & MODEL-BASED AUTOMATION

[SafeTBox – Fraunhofer IESE]

ADAPTIVE SAFETY MANAGEMENT

FROM STATIC TO DYNAMIC SAFETY MANAGEMENT

Intelligent Functionality requires Safety Intelligence

MORE FREEDOM BASED ON SITUATIONAL AWARENESS

ADAPTIVE SAFETY SPACE

Dynamic Is-Situation

Dynamic Safety-Space → Adaptive Safety-Space

Adaptive Safety Management

Adaptive Safety Management

BACKGROUND: FOUNDATIONS FROM SELF-ADAPTIVE SYSTEMS

Planner Executor Adaptation Assurance Adaptation Assurance Executor **Planner** Executor **Analyzer MART Target** System Adaptation Assurance Analyzer Analyzer **Monitor** Adaptation Assurance Monitor Monitor MAPE elements-MART interactions Information and control flow **Environment**

[Kephart, Chess]

[Cheng et. al] (MART = Model@Run.Time)

ADAPTIVE SAFETY MANAGEMENT CYCLE

COGNITIVE SAFETY MANAGEMENT

FROM ADAPTIVE TO COGNITIVE SAFETY MANAGEMENT

ADAPTIVE SAFETY-MANAGEMENT

primarily rule-based

adaptation by dynamic reconfiguration

deterministic & predictable

modular pre-assured

COGNITIVE SAFETY MANAGEMENT

goal-based

self-adaptivity including Al

emerging and adaptive strategies

runtime assurance

EXAMPLE: INTELLIGENT COUNTER PLAYER ARCHITECTURE

Problem: Safeguards intervene too often (false positive error detection)

Solution: Make safety measures more intelligent and active at the strategic / tactical level

adapt functionality following goal-based optimization (avoid safe guard interventions)

keep system safe

EXAMPLE: CONSTITUTIONAL SAFETY ASSURANCE

CONSTITUTION

CONSTITUTIONAL SAFETY ASSURANCE USING B-SPACES

A-SPACE (REALITY)

B-SPACE (VIRTUALITY)

