

Dynamic Flows with Time-Dependent Capacities

Thomas Bläsius, Adrian Feilhauer, Jannik Westenfelder

Dynamic Flows

• Network flow from source *s* to target *t*

Dynamic Flows

- Network flow from source s to target t
- Traversing edges takes time

Dynamic Flows

- Network flow from source s to target t
- Traversing edges takes time
- Maximize flow reaching t before time horizon T

T = 4

Carlsruhe Institute of Technology

Dynamic Flows

- Network flow from source s to target t
- Traversing edges takes time
- Maximize flow reaching t before time horizon T

T = 4

Carlsruhe Institute of Technology

Dynamic Flows

- Network flow from source s to target t
- Traversing edges takes time
- Maximize flow reaching t before time horizon T

Carlsruhe Institute of Technology

Dynamic Flows

- Network flow from source s to target t
- Traversing edges takes time
- Maximize flow reaching t before time horizon T

Solvable via temporally repeated flows [Ford, Fulkerson 1958]

Time Dependent Capacities

• Capacities change over time (here piecewise constant)

Solvable via time expanded networks

Theorem:

Finding maximum dynamic flows with time dependent capacities is weakly NP-hard.

Reduction from PARTITION

Theorem:

Finding maximum dynamic flows with time dependent capacities is weakly NP-hard.

Theorem:

Finding maximum dynamic flows with time dependent capacities is weakly NP-hard.

• Flow of value 1 is equivalent to the PARTITION instance being solvable

Theorem:

Finding maximum dynamic flows with time dependent capacities is weakly NP-hard.

■ Flow of value 1 is equivalent to the PARTITION instance being solvable

Pseudopolynomial solution via time expanded networks

	time-dependent capacities	time-dependent transit times
finite time horizon	hard for 1 change	
infinite considered time		

- Pseudopolynomial solution via time expanded networks
- Potentially unwanted effects near $T \rightarrow$ infinite considered time

	time-dependent capacities	time-dependent transit times
finite time horizon	hard for 1 change	hard for 1 change
infinite considered time	hard for 2 changes	hard for 1 change

- Pseudopolynomial solution via time expanded networks
- Potentially unwanted effects near $T \rightarrow$ infinite considered time

	time-dependent capacities	time-dependent transit times
finite time horizon	hard for 1 change	hard for 1 change
infinite considered time	hard for 2 changes	hard for 1 change
	conjecture: easy for 1 change	

- Pseudopolynomial solution via time expanded networks
- Potentially unwanted effects near $T \rightarrow$ infinite considered time

	time-dependent capacities	time-dependent transit times
finite time horizon	hard for 1 change	hard for 1 change
infinite considered time	hard for 2 changes	hard for 1 change
	conjecture: easy for 1 change	

- Is finding maximum dynamic flows in NP?
- How complicated can those maximum flows become?

Karlsruhe Institute of Technology

Dynamic Cut-Flow Duality

- Cuts are vertex partitions S, \overline{S}
- Cut capacity is possible flow from S to \overline{S}
- Dynamic Cuts can change over time

Number of partition changes is the cut's complexity

Karlsruhe Institute of Technology

Dynamic Cut-Flow Duality

- Cuts are vertex partitions S, S
- Cut capacity is possible flow from S to \overline{S}
- Dynamic Cuts can change over time
- Number of partition changes is the cut's complexity

Dynamic Cut-Flow Duality

Theorem (Cut-Flow Duality [Philpott 1990]): The capacity of a minimum dynamic cut equals the value of a maximum dynamic flow.

Karlsruhe Institute of Technology

Mimicking Cuts

How complex are minimum dynamic cuts?
Partition changes can cascade (vertex v)

Karlsruhe Institute of Technology

Mimicking Cuts

How complex are minimum dynamic cuts?
Partition changes can cascade (vertex v)

Idea: use this to make vertex *y* mimic the behavior of *x*

Mimicking Cuts

How complex are minimum dynamic cuts?

Partition changes can cascade (vertex v)

• Idea: use this to make vertex y mimic the behavior of x

 α

Exponentially Complex Cuts

• Given partition changes of vertices *a_i*

Exponentially Complex Cuts

- Given partition changes of vertices *a_i*
- More partition changes at vertex v

Exponentially Complex Cuts

. . .

- Given partition changes of vertices a_i
 More partition changes at vertex v
 - Θ:
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

 v
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Use smaller counters to provide a_i for larger gadgets

Theorem: Minimum dynamic cuts may be exponentially complex.

Exponentially Complex Flows

Cut and flow complexity can occur independently

- Simple flow and complex cut
- Simple cut and complex flow

 H_3

 $H_{\rm start}$

Exponentially Complex Flows

Cut and flow complexity can occur independently

- Simple flow and complex cut
- Simple cut and complex flow
- Cut-Flow-Duality is still helpful:
- Previous construction has complex cut and flow

Theorem: Maximum dynamic flows may be exponentially complex

Institute of Theoretical Informatics, Scalable Algorithms

Complexity of Dynamic Flows and Cuts

Gadgets provide structural insight into dynamic cuts

Complexity of Dynamic Flows and Cuts

Gadgets provide structural insight into dynamic cuts

Cut complexity aligns with computational complexity

н

	capacities	transit times
finite time horizon	complex for 1 change	complex for 1 change
infinite considered time	complex for 2 changes conjecture: simple for 1 change	complex for 1 change
I		

Allow a selection of a selection of

