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Dynamic Flows
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Dynamic Flows

® Network flow from source s to target t

® Traversing edges takes time

® Maximize flow reaching t before time horizon T S t s

©ec[0,1) ©cl,2) © € [2,3)

® Solvable via temporally repeated flows [Ford, Fulkerson 1958]
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Time Dependent Capacities

m Capacities change over time
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® Solvable via time expanded networks
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Computational Complexity

Theorem:
Finding maximum dynamic flows with time dependent capacities is weakly NP-hard.

® Reduction from PARTITION
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Computational Complexity

{Theorem:

® Reduction from PARTITION

Finding maximum dynamic flows with time dependent capacities is weakly NP-hard.
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® Flow of value 1 is equivalent to the PARTITION instance being solvable
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Computational Complexity

® Pseudopolynomial solution via time expanded networks

time-dependent time-dependent
capacities transit times
finite time horizon hard for 1 change

Infinite considered
time
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Computational Complexity

® Pseudopolynomial solution via time expanded networks
m Potentially unwanted effects near T — infinite considered time

time-dependent time-dependent
capacities transit times
finite time horizon hard for 1 change hard for 1 change
infinite considered hard for 2 changes hard for 1 change
time
conjecture: easy for 1 change

® |s finding maximum dynamic flows in NP?
® How complicated can those maximum flows become?
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Dynamic Cut-Flow Duality

m Cuts are vertex partitions S, S

m Cut capacity is possible flow from S to S
@ Dynamic Cuts can change over time

® Number of partition changes is the cut’'s complexity
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Dynamic Cut-Flow Duality

m Cuts are vertex partitions S, S

m Cut capacity is possible flow from S to S T =4

@ Dynamic Cuts can change over time

® Number of partition changes is the cut’'s complexity ©c01) > 4 .t
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Theorem (Cut-Flow Duality [Philpott 1990]):
The capacity of a minimum dynamic cut equals the value of a maximum dynamic flow.

6 Adrian Feilhauer — Dynamic Flows with Time-Dependent Capacities Institute of Theoretical Informatics, Scalable Algorithms m



AT

Mimicking Cuts

® How complex are minimum dynamic cuts?
® Partition changes can cascade (vertex v)
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Mimicking Cuts

® How complex are minimum dynamic cuts?
® Partition changes can cascade (vertex v)

©o

a % b
® »® >0

m Idea: use this to make vertex y mimic the behavior of x
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® How complex are minimum dynamic cuts?

® Partition changes can cascade (vertex v) % e 0
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Exponentially Complex Cuts

m Given partition changes of vertices a;
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Exponentially Complex Cuts

m Given partition changes of vertices a;
® More partition changes at vertex v
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Exponentially Complex Cuts

m Given partition changes of vertices a;
® More partition changes at vertex v
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m Use smaller counters to provide a; for larger gadgets
Theorem:
Minimum dynamic cuts may be exponentially complex.
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Exponentially Complex Flows

m Cut and flow complexity can occur independently
= Simple flow and complex cut
= Simple cut and complex flow
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Exponentially Complex Flows

m Cut and flow complexity can occur independently
= Simple flow and complex cut
= Simple cut and complex flow

@ Cut-Flow-Duality is still helpful:
® Previous construction has complex cut and flow

Theorem:
Maximum dynamic flows may be exponentially complex
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Complexity of Dynamic Flows and Cuts

® Gadgets provide structural insight into dynamic cuts *
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Complexity of Dynamic Flows and Cuts

® Gadgets provide structural insight into dynamic cuts *'

® Cut complexity aligns with computational complexity

time-dependent time-dependent
capacities transit times
finite time horizon complex for 1 change complex for 1 change
infinite considered complex for 2 changes complex for 1 change
time . .
conjecture: simple for 1 change
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