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s t

s t s t

Θ ∈ [0; 1)

s t

Θ ∈ [1; 2) Θ ∈ [2; 3)

T = 4

s tMaximize flow reaching t before time horizon T

Traversing edges takes time

Network flow from source s to target t

Solvable via temporally repeated flows [Ford, Fulkerson 1958]
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Time Dependent Capacities

Capacities change over time (here piecewise constant)
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Solvable via time expanded networks
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Computational Complexity

Reduction from PARTITION

Theorem:
Finding maximum dynamic flows with time dependent capacities is weakly NP-hard.
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Computational Complexity

Reduction from PARTITION
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Computational Complexity

Pseudopolynomial solution via time expanded networks
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Computational Complexity

Pseudopolynomial solution via time expanded networks
Potentially unwanted effects near T → infinite considered time

finite time horizon

infinite considered
time

time-dependent
capacities

time-dependent
transit times

hard for 1 change hard for 1 change

hard for 1 changehard for 2 changes

Is finding maximum dynamic flows in NP?

conjecture: easy for 1 change

How complicated can those maximum flows become?
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Dynamic Cut-Flow Duality

Cuts are vertex partitions S; S̄
Cut capacity is possible flow from S to S̄
Dynamic Cuts can change over time
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Dynamic Cut-Flow Duality

Cuts are vertex partitions S; S̄
Cut capacity is possible flow from S to S̄
Dynamic Cuts can change over time
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Number of partition changes is the cut’s complexity

Theorem (Cut-Flow Duality [Philpott 1990]):
The capacity of a minimum dynamic cut equals the value of a maximum dynamic flow.



Adrian Feilhauer – Dynamic Flows with Time-Dependent Capacities Institute of Theoretical Informatics, Scalable Algorithms7

Mimicking Cuts

Partition changes can cascade (vertex v )
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How complex are minimum dynamic cuts?



Adrian Feilhauer – Dynamic Flows with Time-Dependent Capacities Institute of Theoretical Informatics, Scalable Algorithms7

Mimicking Cuts

Partition changes can cascade (vertex v )

Idea: use this to make vertex y mimic the behavior of x
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How complex are minimum dynamic cuts?
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Exponentially Complex Cuts

Given partition changes of vertices ai
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Exponentially Complex Cuts

Given partition changes of vertices ai
More partition changes at vertex v
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Exponentially Complex Cuts

Given partition changes of vertices ai
More partition changes at vertex v

Use smaller counters to provide ai for larger gadgets
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Theorem:
Minimum dynamic cuts may be exponentially complex.
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Exponentially Complex Flows
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Exponentially Complex Flows
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Cut and flow complexity can occur independently

Cut-Flow-Duality is still helpful:

Simple flow and complex cut
Simple cut and complex flow

Previous construction has complex cut and flow

Theorem:
Maximum dynamic flows may be exponentially complex
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Complexity of Dynamic Flows and Cuts

Gadgets provide structural insight into dynamic cuts
x y t

α β
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Complexity of Dynamic Flows and Cuts

Cut complexity aligns with computational complexity

Gadgets provide structural insight into dynamic cuts

finite time horizon

infinite considered
time

time-dependent
capacities

time-dependent
transit times

complex for 1 change complex for 1 change

complex for 1 changecomplex for 2 changes

conjecture: simple for 1 change
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