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Random Intersection Graphs – Basic Model Definition

Introduced in [Karoński et al., Comb. Prob. Computing, 1999]

Definition (Random intersection graph Gn,m,p)
LetM be a set of m labels.
Let V be a set of n vertices.
Edge appearance rule:

To each vertex v ∈ V we independently assign a random label subset
Sv , by including each label ` ∈M independently with probability p.
We connect two vertices u, v iff Su ∩ Sv 6= ∅.

Note 1: The bipartite graph Bn,m,p with vertex set V
⋃M and edge set

{(v , `) : ` ∈ Sv} is called associated bipartite to the Gn,m,p.

Note 2: Denote by L` the set of vertices having chosen label `.
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An example
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v4
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label set M
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Bn,m,p

associated bipartite
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v2
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v4

RIG instance
Gn,m,p

⇒

Figure: Sv1 = {l1} and Ll4 = {v3, v5}
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Motivation – Why RIGs

Appropriate for network modeling in applications where there is an
implied dependence between neighboring nodes:

social networks (vertices ↔ individuals, labels ↔
beliefs/preferences/locations )
oblivious resource sharing under various distributed settings
secure communication in sensor networks

Edges are not independent, however...
→ Equivalence with Erdős-Rényi random graphs: m = nα, α > 0 constant

α > 6: ‖Gn,m,p − Gn,p̂‖TV → 0, where p̂ = 1− (1− p2)m (uncoditioned
edge existence probability) [Fill et al., Rand. Struct. Algorithms, 2000]
α ≥ 3: equivalence of sharp threshold functions [Rybarczyk, Rand. Struct.
Algorithms, 2011]
α > 1: translation results regarding lower bounds for increasing
properties [Raptopoulos, Spirakis, ISAAC, 2005]

→ “interesting case” m = nα, α ≤ 1.
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Finding Maximum Cliques
Definition and Related Work

Definition (MAX-CLIQUE)
Given a graph G = (V ,E ), find a clique of maximum size.

Fundamental problem motivated by research related to the Internet,
social networks, bibliographic databases, energy distribution networks,
global networks of economies etc.

Arbitrary graphs:
MAX-CLIQUE is NP-complete [Karp 1972]; fastest algorithm runs in
O(1.1888n) .
It is hard to approximate [Håstad 1999]; best approximation ration is
O
(
n(log log n)2

(log n)3

)
.

Given the maximum clique has size k it cannot be solved in time
no(k), unless the exponential time hypothesis fails; brute force
approach takes O(nkk2).
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Finding Maximum Cliques in Random Graphs

Erdős-Rényi random graphs:

MAX-CLIQUE remains hard in Gn, 12
; there is a clique of size 2 ln n whp

but most algorithms can only find a clique of size ln n.
Conjecture [Jerrum 1992]: finding an 1.01 ln n clique remains hard
even if the input graph is a Gn, 12

random graph in which we have

planted a randomly chosen clique of size n0.49.

Random intersection graphs:

When m = nα, α < 1, whp we can find a maximum clique in Gn,m,p in
polynomial time, provided the label choices are given as input (rather
than just the resulting graph). [Nikoletseas, Raptopoulos, Spirakis, Comput. Sci.

Rev. 2021], [Nikoletseas, Raptopoulos, Spirakis, MFCS 2012]
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Maximum Cliques in RIGs

Label Reconstruction and the Single Label Clique Theorem
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Label Reconstruction in Gn,m,p
Observation: Given Gn,m,p, the associated bipartite graph is not unique!
But...

Theorem ([Nikoletseas, Raptopoulos, Spirakis, Comput. Sci. Rev. 2021])
Under “mild” conditions∗ on m, p, the bipartite graph Bn,m,p associated to
Gn,m,p is uniquely determined whp, up to permutations of the labels.

∗ m < n, p = Ω
(√

1
nm

)
and mp2 = O(1)

Main technical idea: The
Single Label Clique Theorem

for maximum cliques in
“dense” Gn,m,p

L1

L3

L2Q
v1

v2 v3
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Maximum cliques in dense Gn,m,p
The Single Label Clique Theorem

Theorem (Single Label Clique Theorem - SLCT [Comput. Sci. Rev. 2021])

Let m = nα, 0 < α < 1 and mp2 = O(1). Then whp, any clique Q of size
|Q| ∼ np in Gn,m,p is formed by a single label. In particular, the maximum
clique is formed by a single label.

Note:
For p = o

(√
1
nm

)
: Gn,m,p is chordal whp [Behrisch et al. 2008]

⇒ finding a maximum clique is easy.

For p = Ω
(√

1
nm

)
: Gn,m,p is not chordal and can be quite dense for

mp2 = Θ(1).
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Maximum cliques in Gn,m,p with α < 1

SLCT - proof sketch.
Two definitional tools: for disjoint V1,V2 ⊂ V

p(V1,V2): probability all edges between V1,V2 exist.

p(V1,V2) ≤
(
|S (2)

V2
|p +

∏

v∈V2

(
1− (1− p)|Sv |

))|V1|

where S
(2)
V2

is the set of labels chosen by at least 2 vertices in V2.

A|V1|,|V2|: Event (a) ∃`0 ∈M chosen by all vertices in V1 but none in V2
AND (b) all edges between V1,V2 exist (we bound the probability of (b) by
p(V1,V2))

L`0 ⊇ V1

V2

V2 ∩ L`0 = ∅

Figure: Q ′ = {v1, v2, v3}.
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Maximum cliques in Gn,m,p with α < 1

SLCT - proof sketch.
Rainbow coupling (contradiction) argument:
Suppose a large Q is not formed by a single label.

L1

L3

L2Q
v1

v2 v3

1 For any `0 ∈M, we have |Q ∩ L`0 | ≤ np1+c , where 0 < c < 1−α
1+α .

single labels make only small parts of Q
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Maximum cliques in Gn,m,p with α < 1

SLCT - proof sketch.
Rainbow coupling (contradiction) argument:
Suppose a large Q is not formed by a single label.

L1

L3

L2Q
v1

v2 v3

2 By contradiction arguments there is a large rainbow clique Q ′ ⊆ Q:

edges in Q ′ are formed by distinct labels and
|Q ′| ≥ p−

c
2 , for any positive constant c < 1−α

1+α .

Q ′ = {v1, v2, v3}
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Maximum cliques in Gn,m,p with α < 1

SLCT - proof sketch.
Rainbow coupling (contradiction) argument:
Suppose a large Q is not formed by a single label.

L1

L3

L2Q
v1

v2 v3

3 By domination and the union bound, the probability that Q ′ exists is at most

(
n

|Q ′|

)(
1− (1− p2)m

)(|Q′|
2 )

= o(1).
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Is label reconstruction possible?

Corollary
Given the label representation of Gn,m,p, we can quickly identify its
maximum clique whp when α < 1.

Open Problem: Can we find Bn,m,p (up to permutations of the labels)
when provided with just the vertices and edges of Gn,m,p?

Note: So far this is possible only for small values of m, or for sparse instances of
Gn,m,p.
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Problem definition: Weighted Max Cut

Definition (Weighted Max Cut)
Input: Undirected weighted graph G (V ,E ,W), W is a (symmetric)

weight matrix
Output: 2-coloring x(max) : V → {+1,−1} with maximum cumulative

weight of bicolor edges

max
x∈{±1}|V |

1
4

∑

{i ,j}∈E

Wi ,j(xi − xj)
2 = MaxCut(G )

1

32

1

1

4

a

b c

de
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Problem definition: Weighted Max Cut

Definition (Weighted Max Cut)
Input: Undirected weighted graph G (V ,E ,W), W is a (symmetric)

weight matrix
Output: 2-coloring x(max) : V → {+1,−1} with maximum cumulative

weight of bicolor edges

max
x∈{±1}|V |

1
4

∑

{i ,j}∈E

Wi ,j(xi − xj)
2 = MaxCut(G )

Well motivated: graph layout and embedding problems, minimizing
Hamiltonian of spin models, VLSI design, data clustering etc.
Complexity: APX-hard (cannot find a solution arbitrarily close to
optimal unless P=NP)
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Average Case

Can we do better when G follows a (known) probability distribution?

Sparse Erdős-Rényi random graphs Gn, γ
n
, γ > 0 constant

Phase transition at γ = 1
2 : MaxCut(G ) is |E | − O(1) whp when γ < 1

2 ,
and |E | − Ω(n) whp when γ > 1

2 [Coppersmith et al., Random Struct.
Algorithms,2006]
Limiting behaviour for large γ: MaxCut(G ) asymptotically equal to
(γ2 + P∗

√
γ
2 )n, where P∗ ≈ 0.7632, whp. [Dembo et al., Ann.

Probability,2017] (non-constructive proof)
Approximation algorithm: A cut of size at least

(
γ
2 + 0.37613

√
γ
)
n

whp, can be constructed in polynomial time. [Coppersmith et al., Rand.
Struct. Alg.,2004]

Weighted random intersection graphs (...this talk)
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Weighted Random Intersection Graphs – Definition

Definition (Weighted random intersection graph Gn,m,p)
Set of n vertices V , set of m labelsM
Assign to each vertex v a random subset Sv ⊆M: for each
` ∈M,Pr(` ∈ Sv ) =p, independently of all other label choices
Let R:,v the indicator vector for Sv ; R is the representation matrix of
our graph
Edge {u, v} is given weight |Sv ∩ Su| = [RTR]v ,u

G (V ,E ,RTR) is a random instance of Gn,m,p

p 1− p

v u x y

`1 `2 `3

yx

uv

1

1

2

1 2

R:,v = (1, 0, 1)T , [RTR]v,u = 2, [RTR]v,v = 2

2 1

32
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Further motivation for the weighted model
Discrepancy of random set systems

Let L` ⊆ V the set of vertices having chosen label ` in G (V ,E ,RTR).
Define the set system Σ = {L`1 , L`2 , . . . , L`m}.
R is then the incidence matrix of Σ; V is the universe for Σ.

Definition (Discrepancy)
Given a 2-coloring x : V → {+1,−1}

The imbalance of Σ on x is measured by
disc(Σ, x)

def
= max`∈[m]

∣∣∣
∑

v∈V R`,vxv
∣∣∣ = ‖Rx‖∞

The minimum imbalance over all 2-colorings is the discrepancy of Σ

disc(Σ)
def
= minx∈{±1}n disc(Σ, x)

p 1− p

v u x y

`1 `2 `3

yx

uv

1

1

2

1 2

Σ = {{v, u}, {u, x, y}, {v, u, x}}, disc(Σ) = 1

2 1

32
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Further motivation for the weighted model

Theorem ( [Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021] )

Let Σ have incidence matrix R and G = G (V ,E ,RTR). If disc(Σ) ≤ 1,
any minimum discrepancy coloring also gives a maximum cut of G and vice
versa.

Proof sketch.
Let Cut(G , x) the size of the cut defined by x. By definition

Cut(G , x) =
1
4


 ∑

i ,j∈[n]2

[
RTR

]
i ,j
− ‖Rx‖22




≥ 1
4


 ∑

i ,j∈[n]2

[
RTR

]
i ,j
− ‖Rx‖2∞


 ,

with equality when Rx has only 0’s and ±1’s.
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Further motivation for the weighted model

Theorem ( [Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021] )

Let Σ have incidence matrix R and G = G (V ,E ,RTR). If disc(Σ) ≤ 1,
any minimum discrepancy coloring also gives a maximum cut of G and vice
versa.

Conjecture

When m = nα, α ≤ 1, there exists a minimum discrepancy coloring x(disc)

that gives a cut Cut(G , x(disc)) = (1− o(1))MaxCut(G ) whp.

When n > 1
log 4m logm, disc(Σ) ≤ 1, whp. [Altschuler,Niles-Weed, Rand.

Struct. Algorithms, 2021] (non-constructive proof)
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Weighted MAX-CUT in weighted RIGs

Concentration of MAX-CUT for α ≤ 1
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Concentration of Max-Cut for α ≤ 1

Theorem ( [Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021] )

Let G (V ,E ,RTR) ∼ Gn,m,p with m = nα, α ≤ 1, and p = Ω
(√

1
nm

)
.

Then MaxCut(G ) ≈ ER[MaxCut(G )] whp with respect to R.

Note: This means that MaxCut(G ) concentrates around its expected value.
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Concentration of Max-Cut for α ≤ 1

Proof sketch.
Let x a uniformly random 2-coloring of V .

1
2

∑

i 6=j

[
RTR

]
i ,j
≥ MaxCut(G) ≥ Ex[Cut(G , x)] =

1
4

∑

i 6=j

[
RTR

]
i ,j
.

By linearity of expectation
ER[MaxCut(G)] = Θ(n2mp2).

We will use the following tool:

Theorem (Efron-Stein inequality)
Let X1,X2, . . . ,Xn and X ′1,X

′
2, . . . ,X

′
n be i.i.d. random variables. Let

X = (X1, . . . ,Xn) and X(i) = (X1, . . . ,Xi−1X
′
i ,Xi+1, . . . ,Xn) (i.e. X(i)

comes from X by replacing Xi with an independent copy). Then, for any
function f (X),

Var(f (X)) ≤ 1
2

n∑

i=1

E
[(

f (X)− f (X(i))
)2
]
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Concentration of Max-Cut for α ≤ 1

Proof sketch (continued).

Let R(`,i) be equal to R, but with R`,i replaced by an independent
Bernoulli(p) R′`,i → Define G (`,i) = G (V ,E , (R(`,i))TR(`,i)).

Pr(R′`,i 6= R`,i ) = 2p(1− p) and G ,G (`,i) differ in ≤ |L`\{i}| edges.
By Efron-Stein inequality,

VarR(MaxCut(G )) ≤ 1
2

∑

`,i

ER

[(
MaxCut(G )− MaxCut

(
G (`,i)

))2
]

= O(n3mp3).

Concentration follows from Chebyshev’s inequality: for any ε > 0,

Pr
(
|MaxCut(G )− ER[MaxCut(G )]| ≥ εn2mp2) = O

(
1

ε2nmp

)
.
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Weighted MAX-CUT in weighted RIGs

Random Cuts for α < 1
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Random Cuts for α < 1

Theorem ( [Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021] )

Let G (V ,E ,RTR) ∼ Gn,m,p with m = nα, α < 1, and p = Ω
(√

1
nm

)
.

Let x(rand) be a uniformly random 2-coloring of V .
Whp with respect to x(rand), R,

Cut(G , x(rand)) = (1− o(1))MaxCut(G ).

Proof sketch.

Recall Cut(G , x) = 1
4

(∑
i ,j∈[n]2

[
RTR

]
i ,j
− ‖Rx‖22

)
.

Also ER[MaxCut(G)] = Θ(n2mp2).
→ Suffices to show ‖Rx‖22 = o(n2mp2) whp over random x and R.
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Random Cuts for α < 1

Proof sketch (continued).
Define Z` =

∑
i∈[n] R`,ixi , i.e. the `-th element of Rx

Whp, for any `, Z` has Y` ≤ np non-zero terms. (Chernoff bound)
By Hoeffding’s inequality, for any λ > 0

Pr(|Z`| > λ|Y`) ≤ e
− λ2

2Y` .

Setting λ =
√

6np ln n,

Pr(∃` : |Z`| > λ) ≤ Pr(∃` ∈ [m] : Y` > 3np) + me−
λ2
6np

= o(1) +
m

n
= o(1).

Overall, whp ‖Rx‖2 ≤ mλ2 = 6nmp ln n = o(n2mp2).

Note: Similar proof works also for n = m and p = ω(log n/n).
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Weighted MAX-CUT in weighted RIGs

The Majority Cut Algorithm
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Large cuts in the symmetric sparse case (m = n, p = c
n)

Majority Cut Algorithm

Main idea:
1 Colour εn vertices at random;
2 Let C the set of coloured vertices;
3 Pick v ∈ V \C and choose a colour that maximizes the cut in

G [{v} ∪ C ], given the colours of C :
→ Coulour xv = −1 if and only if

∑
u∈C [RTR]u,vxu ≥ 0;

4 Set C = C ∪ {v} and go to step 3;

3
2

1

1

1

−1

−1

+1

+1

+1

+1

∑
u∈C [R

TR]u,vxu = −2

C

v
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Large cuts in the symmetric sparse case (m = n, p = c
n)

Majority Cut Algorithm

Main idea:

1 Colour εn vertices at random;
2 Let C the set of coloured vertices;
3 Pick v ∈ V \C and choose a colour that maximizes the cut in

G [{v} ∪ C ], given the colours of C :

→ Coulour xv = −1 if and only if
∑

u∈C [RTR]u,vxu ≥ 0;

4 Set C = C ∪ {v} and go to step 3;

Theorem ( [Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021] )

Let G (V ,E ,RTR) ∼ Gn,m,p with m = n, and p = c
n , c > 0 constant.

Whp with respect to R, Majority Cut constructs a cut at least 1 + β times
larger than the expected weight of a random cut, where β ≥ 0.43c−1.5.
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Large cuts in the symmetric sparse case (m = n, p = c
n)

Majority Cut Algorithm - Analysis

Theorem
Let G (V ,E ,RTR) ∼ Gn,m,p with m = n, and p = c

n , c > 0 constant.
Whp with respect to R, Majority Cut constructs a cut at least 1 + β times
larger than the expected weight of a random cut, where β ≥ 0.43c−1.5.

Proof sketch.
Let Mt the constructed cut size just after the consideration of the t-th
vertex:

Mt = Mt−1 +
1
2

∑

i∈[t−1]

[
RTR

]
i ,t
+

1
2

∣∣∣
∑

i∈[t−1]

[
RTR

]
i ,t
xi

∣∣∣.

→ It suffices to bound the expectation of |Zt | def
=
∣∣∣
∑

i∈[t−1]

[
RTR

]
i ,t

xi

∣∣∣.
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Large cuts in the symmetric sparse case (m = n, p = c
n)

Majority Cut Algorithm - Analysis

Proof sketch (continued).

We prove that, for some Binomial random variable ZB
t ,

E[|Zt |
∣∣x[t−1],R[m],[t−1]] ≥ MD(ZB

t ),

where MD(ZB
t )

def
= E[

∣∣ZB
t − Z ′Bt

∣∣], where Z ′Bt is an independent copy
of ZB

t ; this is called the mean absolute difference.
By the Berry-Esseen Theorem (this is a CLT variant for normal
approximation), ZB

t − Z ′Bt is approximately Normal.
→ thus |ZB

t − Z ′Bt | follows approximately the folded normal
distribution:

MD(ZB
t ) ≥

√
c(t − 1)

3πn
− o(1).
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Weighted MAX-CUT and Discrepancy

Relating Weighted MAX-CUT in RIGs to
Discrepancy of Random Set Systems
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Maximum cuts in the symmetric sparse case via discrepancy

Note L` = {v : R`,v} induces a clique K (`).
We replace G (V ,E ,RTR) with the multigraph ∪+

` K
(`); ∪+ means we

keep multiplicities.
Every edge in the multigraph is unweighted (has weight 1).

p 1− p

v u x y

`1 `2 `3

x y

v u

L`2

L`3

L`1
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Maximum cuts in the symmetric sparse case via discrepancy
Weak Bipartization Algorithm

Main idea:

Try to find a small discrepancy coloring for Σ = {L` : ` ∈M} by
assigning locally optimal colourings to each L` separately.
→ How can we fix colour inconsistencies?

1 Replace each clique K (`) by a random maximal matching M(`), thus
getting the graph G (b) def

= ∪+
` M

(`);

x y

v u

x y

v u

L`2

L`3

L`1

⇒

∪+
` K

(`) G(b)
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Maximum cuts in the symmetric sparse case via discrepancy
Weak Bipartization Algorithm

Main idea:

Try to find a small discrepancy coloring for Σ = {L` : ` ∈M} by
assigning locally optimal colourings to each L` separately.
→ How can we fix colour inconsistencies?

1 Replace each clique K (`) by a random maximal matching M(`), thus
getting the graph G (b) def

= ∪+
` M

(`);

Definition (closed vertex-label sequence)

σ := v1, `1, v2, `2, · · · , vk , `k , vk+1 = v1 is a closed vertex-label sequence in G (b) if

(i) it has distinct labels and vertices, and

(ii) vi is connected to vi+1 in G (b), for all i .
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Maximum cuts in the symmetric sparse case via discrepancy
Weak Bipartization Algorithm

Main idea:
Try to find a small discrepancy coloring for Σ = {L` : ` ∈M} by
assigning locally optimal colourings to each L` separately.
→ How can we fix colour inconsistencies?

1 Replace each clique K (`) by a random maximal matching M(`), thus
getting the graph G (b) def

= ∪+
` M

(`);
2 Eliminate odd-length closed vertex-label sequences σ(odd) as they

include odd cycles, thus bipartiteness is violated:
→ resample a maximal matching for K (`), ` ∈ σ(odd) (|L`| ≥ 3);

3 Repeat step 2 until there are no odd-length vertex-label sequences (if
possible);

x y

v u

x y

v u

L`2

L`3

L`1

⇒

∪+
` K

(`) σ(odd) = x, `2, v, `1, u, `3, x
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Maximum cuts in the symmetric sparse case via discrepancy
Weak Bipartization Algorithm

Main idea:
Try to find a small discrepancy coloring for Σ = {L` : ` ∈M} by
assigning locally optimal colourings to each L` separately.
→ How can we fix colour inconsistencies?

1 Replace each clique K (`) by a random maximal matching M(`), thus
getting the graph G (b) def

= ∪+
` M

(`);
2 Eliminate odd-length closed vertex-label sequences σ(odd) as they

include odd cycles, thus bipartiteness is violated:
→ resample a maximal matching for K (`), ` ∈ σ(odd) (|L`| ≥ 3);

3 Repeat step 2 until there are no odd-length vertex-label sequences (if
possible);

x y

v u

x y

v u

L`2

L`3

L`1

⇒

∪+
` K

(`)
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Maximum cuts in the symmetric sparse case via discrepancy
Weak Bipartization Algorithm

Theorem ( [Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021] )

Let G (V ,E ,RTR) ∼ Gn,m,p with m = n, and p = c
n , c > 0 constant.

Whp over R, if Weak Bipartization Algorithm terminates, we can get a
minimum discrepancy 2-colouring that also gives a maximum cut of G .

Note: The conditional statement of the above Theorem is not void.

Theorem ( [Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021] )

Let G (V ,E ,RTR) ∼ Gn,m,p with m = n, and p = c
n , 0 < c < 1 constant.

Whp over R, Weak Bipartization Algorithm terminates in
O ((n +

∑
` |L`|) · log n) polynomial time.
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Open Problems
Sparser Instances and Approximate Solutions

Conjecture

Let G (V ,E ,RTR) ∼ Gn,m,p with m = n, and p = c
n , 1 ≤ c < e constant.

Whp over R, Weak Bipartization Algorithm terminates in polynomial time.

Conjecture

When n = mα, α ≤ 1, there exists a minimum discrepancy coloring x(disc)

that gives a cut Cut(G , x(disc)) asymptotically equal to MaxCut(G ) whp.
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Some more General Research Questions

Other connections between fundamental combinatorial problems and
graph problems on RIGs
Could algorithmic bottlenecks for the former be translated to
bottlenecks for the latter?
What about temporal RIGs? (definitions, problems, etc.)
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Thank you for your attention!
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