Selected Combinatorial Problems Through the Prism of Random Intersection Graphs Models

Paul G. Spirakis, University of Liverpool, UK

Joint work with:
Sotiris Nikoletseas, University of Patras, Greece Christoforos Raptopoulos, University of Patras, Greece

13th International Conference on Algorithms and Complexity (CIAC)
Larnaca, Cyprus
June 13-16, 2023

Overview

- Random Intersection Graphs - Basic Model Definition
- Maximum Cliques in RIGs - The Single Label Clique Theorem
- Weighted MAX-CUT in RIGs and Discrepancy in Random Set Systems
- Open problems

Random Intersection Graphs - Basic Model Definition

Introduced in [Karoński et al., Comb. Prob. Computing, 1999]

Definition (Random intersection graph $\mathcal{G}_{n, m, p}$)

- Let \mathcal{M} be a set of m labels.
- Let V be a set of n vertices.
- Edge appearance rule:
- To each vertex $v \in V$ we independently assign a random label subset S_{v}, by including each label $\ell \in \mathcal{M}$ independently with probability p.
- We connect two vertices u, v iff $S_{u} \cap S_{v} \neq \emptyset$.

Note 1: The bipartite graph $B_{n, m, p}$ with vertex set $V \bigcup \mathcal{M}$ and edge set $\left\{(v, \ell): \ell \in S_{v}\right\}$ is called associated bipartite to the $G_{n, m, p}$.

Note 2: Denote by L_{ℓ} the set of vertices having chosen label ℓ.

An example

associated bipartite

$$
B_{n, m, p}
$$

${ }^{\text {RIG instance }}{ }_{G_{n, m, p}}$

Figure: $S_{v_{1}}=\left\{I_{1}\right\}$ and $L_{I_{4}}=\left\{v_{3}, v_{5}\right\}$

Motivation - Why RIGs

- Appropriate for network modeling in applications where there is an implied dependence between neighboring nodes:
- social networks (vertices \leftrightarrow individuals, labels \leftrightarrow beliefs/preferences/locations)
- oblivious resource sharing under various distributed settings
- secure communication in sensor networks
- Edges are not independent, however...
\rightarrow Equivalence with Erdős-Rényi random graphs: $m=n^{\alpha}, \alpha>0$ constant
- $\alpha>6:\left\|\mathcal{G}_{n, m, p}-\mathcal{G}_{n, \hat{p}}\right\|_{T V} \rightarrow 0$, where $\hat{p}=1-\left(1-p^{2}\right)^{m}$ (uncoditioned edge existence probability) [Fill et al., Rand. Struct. Algorithms, 2000]
- $\alpha \geq 3$: equivalence of sharp threshold functions [Rybarczyk, Rand. Struct. Algorithms, 2011]
- $\alpha>1$: translation results regarding lower bounds for increasing properties [Raptopoulos, Spirakis, ISAAC, 2005]
\rightarrow "interesting case" $m=n^{\alpha}, \alpha \leq 1$.

Overview

- Random Intersection Graphs - Basic Model Definition
- Maximum Cliques in RIGs - The Single Label Clique Theorem
- Weighted MAX-CUT in RIGs and Discrepancy in Random Set Systems
- Open problems

Finding Maximum Cliques

Definition and Related Work

Definition (MAX-CLIQUE)

Given a graph $G=(V, E)$, find a clique of maximum size.

- Fundamental problem motivated by research related to the Internet, social networks, bibliographic databases, energy distribution networks, global networks of economies etc.
Arbitrary graphs:
- MAX-CLIQUE is NP-complete [Karp 1972]; fastest algorithm runs in $O\left(1.1888^{n}\right)$.
- It is hard to approximate [Håstad 1999]; best approximation ration is $O\left(\frac{n(\log \log n)^{2}}{(\log n)^{3}}\right)$.
- Given the maximum clique has size k it cannot be solved in time $n^{o(k)}$, unless the exponential time hypothesis fails; brute force approach takes $O\left(n^{k} k^{2}\right)$.

Finding Maximum Cliques in Random Graphs

Erdős-Rényi random graphs:

- MAX-CLIQUE remains hard in $G_{n, \frac{1}{2}}$; there is a clique of size $2 \ln n$ whp but most algorithms can only find a clique of size $\ln n$.
- Conjecture [Jerrum 1992]: finding an $1.01 \ln n$ clique remains hard even if the input graph is a $G_{n, \frac{1}{2}}$ random graph in which we have planted a randomly chosen clique of size $n^{0.49}$.
Random intersection graphs:
- When $m=n^{\alpha}, \alpha<1$, whp we can find a maximum clique in $G_{n, m, p}$ in polynomial time, provided the label choices are given as input (rather than just the resulting graph). [Nikoletseas, Raptopoulos, Spirakis, Comput. Sci.
Rev. 2021], [Nikoletseas, Raptopoulos, Spirakis, MFCS 2012]

Maximum Cliques in RIGs

Label Reconstruction and the Single Label Clique Theorem

Label Reconstruction in $\mathcal{G}_{n, m, p}$

Observation: Given $G_{n, m, p}$, the associated bipartite graph is not unique! But...

Theorem ([Nikoletseas, Raptopoulos, Spirakis, Comput. Sci. Rev. 2021])

Under "mild" conditions* on m, p, the bipartite graph $B_{n, m, p}$ associated to $G_{n, m, p}$ is uniquely determined whp, up to permutations of the labels.

* $m<n, p=\Omega\left(\sqrt{\frac{1}{n m}}\right)$ and $m p^{2}=O(1)$

Main technical idea: The Single Label Clique Theorem for maximum cliques in "dense" $G_{n, m, p}$

Maximum cliques in dense $\mathcal{G}_{n, m, p}$

The Single Label Clique Theorem

Theorem (Single Label Clique Theorem - SLCT [Comput. Sci. Rev. 2021])

Let $m=n^{\alpha}, 0<\alpha<1$ and $m p^{2}=O(1)$. Then whp, any clique Q of size $|Q| \sim n p$ in $G_{n, m, p}$ is formed by a single label. In particular, the maximum clique is formed by a single label.

Note:

- For $p=o\left(\sqrt{\frac{1}{n m}}\right): G_{n, m, p}$ is chordal whp [Behrisch et al. 2008] $\Rightarrow \quad$ finding a maximum clique is easy.
- For $p=\Omega\left(\sqrt{\frac{1}{n m}}\right): G_{n, m, p}$ is not chordal and can be quite dense for $m p^{2}=\Theta(1)$.

Maximum cliques in $\mathcal{G}_{n, m, p}$ with $\alpha<1$

SLCT - proof sketch.

Two definitional tools: for disjoint $V_{1}, V_{2} \subset V$

- $p\left(V_{1}, V_{2}\right)$: probability all edges between V_{1}, V_{2} exist.

$$
p\left(V_{1}, V_{2}\right) \leq\left(\left|S_{V_{2}}^{(2)}\right| p+\prod_{v \in V_{2}}\left(1-(1-p)^{\left|S_{v}\right|}\right)\right)^{\left|V_{1}\right|}
$$

where $S_{V_{2}}^{(2)}$ is the set of labels chosen by at least 2 vertices in V_{2}.

- $A_{\left|V_{1}\right|,\left|V_{2}\right|}$: Event (a) $\exists \ell_{0} \in \mathcal{M}$ chosen by all vertices in V_{1} but none in V_{2} AND (b) all edges between V_{1}, V_{2} exist (we bound the probability of (b) by $p\left(V_{1}, V_{2}\right)$)

Maximum cliques in $\mathcal{G}_{n, m, p}$ with $\alpha<1$

SLCT - proof sketch.

Rainbow coupling (contradiction) argument:
Suppose a large Q is not formed by a single label.

(1) For any $\ell_{0} \in \mathcal{M}$, we have $\left|Q \cap L_{\ell_{0}}\right| \leq n p^{1+c}$, where $0<c<\frac{1-\alpha}{1+\alpha}$. single labels make only small parts of Q

Maximum cliques in $\mathcal{G}_{n, m, p}$ with $\alpha<1$

SLCT - proof sketch.

Rainbow coupling (contradiction) argument:
Suppose a large Q is not formed by a single label.

$$
Q^{\prime}=\left\{v_{1}, v_{2}, v_{3}\right\}
$$

(2) By contradiction arguments there is a large rainbow clique $Q^{\prime} \subseteq Q$:

- edges in Q^{\prime} are formed by distinct labels and
- $\left|Q^{\prime}\right| \geq p^{-\frac{c}{2}}$, for any positive constant $c<\frac{1-\alpha}{1+\alpha}$.

Maximum cliques in $\mathcal{G}_{n, m, p}$ with $\alpha<1$

SLCT - proof sketch.

Rainbow coupling (contradiction) argument:
Suppose a large Q is not formed by a single label.

(3) By domination and the union bound, the probability that Q^{\prime} exists is at most

$$
\binom{n}{\left|Q^{\prime}\right|}\left(1-\left(1-p^{2}\right)^{m}\right)^{\binom{\left|Q^{\prime}\right|}{2}}=o(1) .
$$

Is label reconstruction possible?

Corollary

Given the label representation of $G_{n, m, p}$, we can quickly identify its maximum clique whp when $\alpha<1$.

Open Problem: Can we find $B_{n, m, p}$ (up to permutations of the labels) when provided with just the vertices and edges of $G_{n, m, p}$?

Note: So far this is possible only for small values of m, or for sparse instances of $G_{n, m, p}$.

Overview

- Random Intersection Graphs - Basic Model Definition
- Maximum Cliques in RIGs - The Single Label Clique Theorem
- Weighted MAX-CUT in RIGs and Discrepancy in Random Set Systems
- Open problems

Problem definition: Weighted Max Cut

Definition (Weighted Max Cut)

Input: Undirected weighted graph $G(V, E, W), \mathbf{W}$ is a (symmetric) weight matrix
Output: 2-coloring $x^{(\max)}: V \rightarrow\{+1,-1\}$ with maximum cumulative weight of bicolor edges

$$
\max _{\mathbf{x} \in\{ \pm 1\}^{|V|}} \frac{1}{4} \sum_{\{i, j\} \in E} \mathbf{W}_{i, j}\left(x_{i}-x_{j}\right)^{2}=\operatorname{MaxCut}(G)
$$

Problem definition: Weighted Max Cut

Definition (Weighted Max Cut)

Input: Undirected weighted graph $G(V, E, W), \mathbf{W}$ is a (symmetric) weight matrix
Output: 2-coloring $x^{(\max)}: V \rightarrow\{+1,-1\}$ with maximum cumulative weight of bicolor edges

$$
\max _{\mathbf{x} \in\{ \pm 1\}^{|v|}} \frac{1}{4} \sum_{\{i, j\} \in E} \mathbf{W}_{i, j}\left(x_{i}-x_{j}\right)^{2}=\operatorname{MaxCut}(G)
$$

- Well motivated: graph layout and embedding problems, minimizing Hamiltonian of spin models, VLSI design, data clustering etc.
- Complexity: APX-hard (cannot find a solution arbitrarily close to optimal unless $\mathrm{P}=\mathrm{NP}$)

Average Case

Can we do better when G follows a (known) probability distribution?

- Sparse Erdős-Rényi random graphs $G_{n, \frac{\gamma}{n}}, \gamma>0$ constant
- Phase transition at $\gamma=\frac{1}{2}: \operatorname{MaxCut}(G)$ is $|E|-O(1)$ whp when $\gamma<\frac{1}{2}$, and $|E|-\Omega(n)$ whp when $\gamma>\frac{1}{2}$ [Coppersmith et al., Random Struct. Algorithms,2006]
- Limiting behaviour for large γ : $\operatorname{MaxCut}(G)$ asymptotically equal to $\left(\frac{\gamma}{2}+P_{*} \sqrt{\frac{\gamma}{2}}\right) n$, where $\overline{P_{*}} \approx 0.7632$, whp. [Dembo et al., Ann. Probability, 2017] (non-constructive proof)
- Approximation algorithm: A cut of size at least $\left(\frac{\gamma}{2}+0.37613 \sqrt{\gamma}\right) n$ whp, can be constructed in polynomial time. [Coppersmith et al., Rand. Struct. Alg.,2004]
- Weighted random intersection graphs (...this talk)

Weighted Random Intersection Graphs - Definition

Definition (Weighted random intersection graph $\overline{\mathcal{G}}_{n, m, p}$)

- Set of n vertices V, set of m labels \mathcal{M}
- Assign to each vertex v a random subset $S_{v} \subseteq \mathcal{M}$: for each $\ell \in \mathcal{M}, \operatorname{Pr}\left(\ell \in S_{v}\right)=p$, independently of all other label choices
- Let $\mathrm{R}_{:, v}$ the indicator vector for $S_{v} ; \mathrm{R}$ is the representation matrix of our graph
- Edge $\{u, v\}$ is given weight $\left|S_{v} \cap S_{u}\right|=\left[\mathbf{R}^{T} \mathbf{R}\right]_{v, u}$
- $G\left(V, E, \mathrm{R}^{T} \mathrm{R}\right)$ is a random instance of $\overline{\mathcal{G}}_{n, m, p}$

$$
\mathbf{R}_{:, v}=(1,0,1)^{T}, \quad\left[\mathbf{R}^{T} \mathbf{R}\right]_{v, u}=2, \quad\left[\mathbf{R}^{T} \mathbf{R}\right]_{v, v}=2
$$

Further motivation for the weighted model

Discrepancy of random set systems

- Let $L_{\ell} \subseteq V$ the set of vertices having chosen label ℓ in $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right)$.
- Define the set system $\Sigma=\left\{L_{\ell_{1}}, L_{\ell_{2}}, \ldots, L_{\ell_{m}}\right\}$.
- R is then the incidence matrix of $\Sigma ; V$ is the universe for Σ.

Definition (Discrepancy)

Given a 2-coloring $\mathbf{x}: V \rightarrow\{+1,-1\}$

- The imbalance of Σ on \mathbf{x} is measured by $\operatorname{disc}(\Sigma, \mathbf{x}) \stackrel{\text { def }}{=} \max _{\ell \in[m]}\left|\sum_{v \in V} \mathbf{R}_{\ell, v} \mathbf{x}_{v}\right|=\|\mathbf{R}\|_{\infty}$
- The minimum imbalance over all 2-colorings is the discrepancy of Σ $\operatorname{disc}(\Sigma) \stackrel{\text { def }}{=} \min _{\mathbf{x} \in\{ \pm 1\}^{n}} \operatorname{disc}(\Sigma, \mathbf{x})$

$$
\Sigma=\{\{v, u\},\{u, x, y\},\{v, u, x\}\}, \quad \operatorname{disc}(\Sigma)=1
$$

Further motivation for the weighted model

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let Σ have incidence matrix \mathbf{R} and $G=G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right)$. If $\operatorname{disc}(\Sigma) \leq 1$, any minimum discrepancy coloring also gives a maximum cut of G and vice versa.

Proof sketch.

Let $\operatorname{Cut}(G, x)$ the size of the cut defined by \mathbf{x}. By definition

$$
\begin{aligned}
\operatorname{Cut}(G, \mathbf{x}) & =\frac{1}{4}\left(\sum_{i, j \in[n]^{2}}\left[\mathbf{R}^{T} \mathbf{R}\right]_{i, j}-\|\mathbf{R}\|_{2}^{2}\right) \\
& \geq \frac{1}{4}\left(\sum_{i, j \in[n]^{2}}\left[\mathbf{R}^{T} \mathbf{R}\right]_{i, j}-\|\mathbf{R} \mathbf{x}\|_{\infty}^{2}\right),
\end{aligned}
$$

with equality when $R x$ has only 0 's and ± 1 's.

Further motivation for the weighted model

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let Σ have incidence matrix \mathbf{R} and $G=G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right)$. If $\operatorname{disc}(\Sigma) \leq 1$, any minimum discrepancy coloring also gives a maximum cut of G and vice versa.

Conjecture

When $m=n^{\alpha}, \alpha \leq 1$, there exists a minimum discrepancy coloring $\mathrm{x}^{(\text {disc })}$ that gives a cut $\operatorname{Cut}\left(G, \mathrm{x}^{(\mathrm{disc})}\right)=(1-o(1)) \operatorname{MaxCut}(G)$ whp.

- When $n>\frac{1}{\log 4} m \log m, \operatorname{disc}(\Sigma) \leq 1$, whp. [Altschuler,Niles-Weed, Rand. Struct. Algorithms, 2021] (non-constructive proof)

Weighted MAX-CUT in weighted RIGs

Concentration of MAX-CUT for $\alpha \leq 1$

Concentration of Max-Cut for $\alpha \leq 1$

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right) \sim \overline{\mathcal{G}}_{n, m, p}$ with $m=n^{\alpha}, \alpha \leq 1$, and $p=\Omega\left(\sqrt{\frac{1}{n m}}\right)$.
Then $\operatorname{MaxCut}(G) \approx \mathbb{E}_{\mathbf{R}}[\operatorname{MaxCut}(G)]$ whp with respect to \mathbf{R}.

Note: This means that $\operatorname{MaxCut}(G)$ concentrates around its expected value.

Concentration of Max-Cut for $\alpha \leq 1$

Proof sketch.

- Let x a uniformly random 2-coloring of V.

$$
\frac{1}{2} \sum_{i \neq j}\left[\mathbf{R}^{T} \mathbf{R}\right]_{i, j} \geq \operatorname{MaxCut}(G) \geq \mathbb{E}_{\mathbf{x}}[\operatorname{Cut}(G, \mathbf{x})]=\frac{1}{4} \sum_{i \neq j}\left[\mathbf{R}^{T} \mathbf{R}\right]_{i, j}
$$

- By linearity of expectation

$$
\mathbb{E}_{\mathbf{R}}[\operatorname{MaxCut}(\mathrm{G})]=\Theta\left(n^{2} m p^{2}\right)
$$

- We will use the following tool:

Theorem (Efron-Stein inequality)

Let $X_{1}, X_{2}, \ldots, X_{n}$ and $X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}$ be i.i.d. random variables. Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\mathbf{X}^{(i)}=\left(X_{1}, \ldots, X_{i-1} X_{i}^{\prime}, X_{i+1}, \ldots, X_{n}\right)$ (i.e. $\mathbf{X}^{(i)}$ comes from \mathbf{X} by replacing X_{i} with an independent copy). Then, for any function $f(\mathbf{X})$,

$$
\operatorname{Var}(f(\mathbf{X})) \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\left(f(\mathbf{X})-f\left(\mathbf{X}^{(i)}\right)\right)^{2}\right]
$$

Concentration of Max-Cut for $\alpha \leq 1$

Proof sketch (continued).

- Let $\mathbf{R}^{(\ell, i)}$ be equal to \mathbf{R}, but with $\mathbf{R}_{\ell, i}$ replaced by an independent Bernoulli $(p) \mathrm{R}_{\ell, i}^{\prime} \rightarrow$ Define $G^{(\ell, i)}=G\left(V, E,\left(\mathbf{R}^{(\ell, i)}\right)^{T} \mathbf{R}^{(\ell, i)}\right)$.
- $\operatorname{Pr}\left(\mathbf{R}_{\ell, i}^{\prime} \neq \mathbf{R}_{\ell, i}\right)=2 p(1-p)$ and $G, G^{(\ell, i)}$ differ in $\leq\left|L_{\ell} \backslash\{i\}\right|$ edges.
- By Efron-Stein inequality,

$$
\begin{aligned}
\operatorname{Var}_{\mathbf{R}}(\operatorname{MaxCut}(G)) & \leq \frac{1}{2} \sum_{\ell, i} \mathbb{E}_{\mathbf{R}}\left[\left(\operatorname{MaxCut}(G)-\operatorname{MaxCut}\left(G^{(\ell, i)}\right)\right)^{2}\right] \\
& =O\left(n^{3} m p^{3}\right) .
\end{aligned}
$$

- Concentration follows from Chebyshev's inequality: for any $\epsilon>0$,

$$
\operatorname{Pr}\left(\left|\operatorname{MaxCut}(G)-\mathbb{E}_{\mathbf{R}}[\operatorname{MaxCut}(G)]\right| \geq \epsilon n^{2} m p^{2}\right)=O\left(\frac{1}{\epsilon^{2} n m p}\right) .
$$

Weighted MAX-CUT in weighted RIGs

Random Cuts for $\alpha<1$

Random Cuts for $\alpha<1$

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right) \sim \overline{\mathcal{G}}_{n, m, p}$ with $m=n^{\alpha}, \alpha<1$, and $p=\Omega\left(\sqrt{\frac{1}{n m}}\right)$. Let $\mathbf{x}^{(r a n d)}$ be a uniformly random 2-coloring of V.
Whp with respect to $\mathbf{x}^{(r a n d)}, \mathbf{R}$,

$$
\operatorname{Cut}\left(G, x^{(r a n d)}\right)=(1-o(1)) \operatorname{MaxCut}(G) .
$$

Proof sketch.

- Recall $\operatorname{Cut}(G, \mathbf{x})=\frac{1}{4}\left(\sum_{i, j \in[n]^{2}}\left[\mathbf{R}^{T} \mathbf{R}\right]_{i, j}-\|\mathbf{R} \mathbf{x}\|_{2}^{2}\right)$.
- Also $\mathbb{E}_{\mathbf{R}}[\operatorname{MaxCut}(G)]=\Theta\left(n^{2} m p^{2}\right)$.
\rightarrow Suffices to show $\|\mathbf{R x}\|_{2}^{2}=o\left(n^{2} m p^{2}\right)$ whp over random \mathbf{x} and \mathbf{R}.

Random Cuts for $\alpha<1$

Proof sketch (continued).

- Define $Z_{\ell}=\sum_{i \in[n]} \mathbf{R}_{\ell, i} x_{i}$, i.e. the ℓ-th element of $\mathbf{R x}$
- Whp, for any ℓ, Z_{ℓ} has $Y_{\ell} \leq n p$ non-zero terms. (Chernoff bound)
- By Hoeffding's inequality, for any $\lambda>0$

$$
\operatorname{Pr}\left(\left|Z_{\ell}\right|>\lambda \mid Y_{\ell}\right) \leq e^{-\frac{\lambda^{2}}{2 Y_{\ell}}}
$$

- Setting $\lambda=\sqrt{6 n p \ln n}$,

$$
\begin{aligned}
\operatorname{Pr}\left(\exists \ell:\left|Z_{\ell}\right|>\lambda\right) & \leq \operatorname{Pr}\left(\exists \ell \in[m]: Y_{\ell}>3 n p\right)+m e^{-\frac{\lambda^{2}}{6 n p}} \\
& =o(1)+\frac{m}{n}=o(1) .
\end{aligned}
$$

- Overall, whp $\|\mathbf{R x}\|^{2} \leq m \lambda^{2}=6 n m p \ln n=o\left(n^{2} m p^{2}\right)$.

Note: Similar proof works also for $n=m$ and $p=\omega(\log n / n)$.

Weighted MAX-CUT in weighted RIGs

The Majority Cut Algorithm

Large cuts in the symmetric sparse case $\left(m=n, p=\frac{c}{n}\right)$ Majority Cut Algorithm

Main idea:
(1) Colour ϵn vertices at random;
(2) Let C the set of coloured vertices;
(3) Pick $v \in V \backslash C$ and choose a colour that maximizes the cut in $G[\{v\} \cup C]$, given the colours of C :
\rightarrow Coulour $\mathbf{x}_{v}=-1$ if and only if $\sum_{u \in C}\left[\mathbf{R}^{\top} \mathbf{R}\right]_{u, v} \mathbf{x}_{u} \geq 0$;
(9) Set $C=C \cup\{v\}$ and go to step 3;

Large cuts in the symmetric sparse case $\left(m=n, p=\frac{c}{n}\right)$ Majority Cut Algorithm

Main idea:
(1) Colour ϵn vertices at random;
(2) Let C the set of coloured vertices;
(3) Pick $v \in V \backslash C$ and choose a colour that maximizes the cut in $G[\{v\} \cup C]$, given the colours of C :
\rightarrow Coulour $\mathbf{x}_{v}=-1$ if and only if $\sum_{u \in C}\left[\mathbf{R}^{\top} \mathbf{R}\right]_{u, v} \mathbf{x}_{u} \geq 0$;
(9) Set $C=C \cup\{v\}$ and go to step 3;

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right) \sim \overline{\mathcal{G}}_{n, m, p}$ with $m=n$, and $p=\frac{c}{n}, c>0$ constant. Whp with respect to \mathbf{R}, Majority Cut constructs a cut at least $1+\beta$ times larger than the expected weight of a random cut, where $\beta \geq 0.43 c^{-1.5}$.

Large cuts in the symmetric sparse case $\left(m=n, p=\frac{c}{n}\right)$ Majority Cut Algorithm - Analysis

Theorem

Let $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right) \sim \overline{\mathcal{G}}_{n, m, p}$ with $m=n$, and $p=\frac{c}{n}, c>0$ constant. Whp with respect to \mathbf{R}, Majority Cut constructs a cut at least $1+\beta$ times larger than the expected weight of a random cut, where $\beta \geq 0.43 c^{-1.5}$.

Proof sketch.

- Let M_{t} the constructed cut size just after the consideration of the t-th vertex:

$$
M_{t}=M_{t-1}+\frac{1}{2} \sum_{i \in[t-1]}\left[\mathbf{R}^{T} \mathbf{R}\right]_{i, t}+\frac{1}{2}\left|\sum_{i \in[t-1]}\left[\mathbf{R}^{T} \mathbf{R}\right]_{i, t} x_{i}\right|
$$

\rightarrow It suffices to bound the expectation of $\left|Z_{t}\right| \stackrel{\text { def }}{=}\left|\sum_{i \in[t-1]}\left[\mathbf{R}^{T} \mathbf{R}\right]_{i, t} x_{i}\right|$.

Large cuts in the symmetric sparse case $\left(m=n, p=\frac{c}{n}\right)$ Majority Cut Algorithm - Analysis

Proof sketch (continued).

- We prove that, for some Binomial random variable Z_{t}^{B},

$$
\mathbb{E}\left[\left|Z_{t}\right| \mid \mathbf{x}_{[t-1]}, \mathbf{R}_{[m],[t-1]}\right] \geq \operatorname{MD}\left(Z_{t}^{B}\right)
$$

where $\operatorname{MD}\left(Z_{t}^{B}\right) \stackrel{\text { def }}{=} \mathbb{E}\left[\left|Z_{t}^{B}-Z_{t}^{\prime B}\right|\right]$, where $Z_{t}^{\prime B}$ is an independent copy of Z_{t}^{B}; this is called the mean absolute difference.

- By the Berry-Esseen Theorem (this is a CLT variant for normal approximation), $Z_{t}^{B}-Z_{t}^{\prime B}$ is approximately Normal.
\rightarrow thus $\left|Z_{t}^{B}-Z_{t}^{\prime B}\right|$ follows approximately the folded normal distribution:

$$
\operatorname{MD}\left(Z_{t}^{B}\right) \geq \sqrt{\frac{c(t-1)}{3 \pi n}}-o(1)
$$

Weighted MAX-CUT and Discrepancy

Relating Weighted MAX-CUT in RIGs to Discrepancy of Random Set Systems

Maximum cuts in the symmetric sparse case via discrepancy

- Note $L_{\ell}=\left\{v: \mathbf{R}_{\ell, v}\right\}$ induces a clique $K^{(\ell)}$.
- We replace $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right)$ with the multigraph $\cup_{\ell}^{+} K^{(\ell)} ; \cup^{+}$means we keep multiplicities.
- Every edge in the multigraph is unweighted (has weight 1).

Maximum cuts in the symmetric sparse case via discrepancy

 Weak Bipartization AlgorithmMain idea:

- Try to find a small discrepancy coloring for $\Sigma=\left\{L_{\ell}: \ell \in \mathcal{M}\right\}$ by assigning locally optimal colourings to each L_{ℓ} separately.
\rightarrow How can we fix colour inconsistencies?
(1) Replace each clique $K^{(\ell)}$ by a random maximal matching $M^{(\ell)}$, thus getting the graph $G^{(b)} \stackrel{\text { def }}{=} \cup_{\ell}^{+} M^{(\ell)}$;

Maximum cuts in the symmetric sparse case via discrepancy

 Weak Bipartization AlgorithmMain idea:

- Try to find a small discrepancy coloring for $\Sigma=\left\{L_{\ell}: \ell \in \mathcal{M}\right\}$ by assigning locally optimal colourings to each L_{ℓ} separately.
\rightarrow How can we fix colour inconsistencies?
(1) Replace each clique $K^{(\ell)}$ by a random maximal matching $M^{(\ell)}$, thus getting the graph $G(b) \stackrel{\text { def }}{=} \cup_{\ell}^{+} M^{(\ell)}$;

Definition (closed vertex-label sequence)

$\sigma:=v_{1}, \ell_{1}, v_{2}, \ell_{2}, \cdots, v_{k}, \ell_{k}, v_{k+1}=v_{1}$ is a closed vertex-label sequence in $G^{(b)}$ if
(i) it has distinct labels and vertices, and
(ii) v_{i} is connected to v_{i+1} in $G^{(b)}$, for all i.

Maximum cuts in the symmetric sparse case via discrepancy

 Weak Bipartization AlgorithmMain idea:

- Try to find a small discrepancy coloring for $\Sigma=\left\{L_{\ell}: \ell \in \mathcal{M}\right\}$ by assigning locally optimal colourings to each L_{ℓ} separately.
\rightarrow How can we fix colour inconsistencies?
(1) Replace each clique $K^{(\ell)}$ by a random maximal matching $M^{(\ell)}$, thus getting the graph $G^{(b)} \stackrel{\text { def }}{=} \cup_{\ell}^{+} M^{(\ell)}$;
(2) Eliminate odd-length closed vertex-label sequences $\sigma^{\text {(odd) }}$ as they include odd cycles, thus bipartiteness is violated:

(3) Repeat step 2 until there are no odd-length vertex-label sequences (if possible);

$\sigma^{(\text {odd })}=x, \ell_{2}, v, \ell_{1}, w, \ell_{3}, x$

Maximum cuts in the symmetric sparse case via discrepancy

 Weak Bipartization AlgorithmMain idea:

- Try to find a small discrepancy coloring for $\Sigma=\left\{L_{\ell}: \ell \in \mathcal{M}\right\}$ by assigning locally optimal colourings to each L_{ℓ} separately.
\rightarrow How can we fix colour inconsistencies?
(1) Replace each clique $K^{(\ell)}$ by a random maximal matching $M^{(\ell)}$, thus getting the graph $G^{(b)} \stackrel{\text { def }}{=} \cup_{\ell}^{+} M^{(\ell)}$;
(2) Eliminate odd-length closed vertex-label sequences $\sigma^{\text {(odd) }}$ as they include odd cycles, thus bipartiteness is violated:

(3) Repeat step 2 until there are no odd-length vertex-label sequences (if possible);

$\cup_{\rho}^{+} K^{(\ell)}$

Maximum cuts in the symmetric sparse case via discrepancy

 Weak Bipartization Algorithm
Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right) \sim \overline{\mathcal{G}}_{n, m, p}$ with $m=n$, and $p=\frac{c}{n}, c>0$ constant. Whp over \mathbf{R}, if Weak Bipartization Algorithm terminates, we can get a minimum discrepancy 2-colouring that also gives a maximum cut of G.

Note: The conditional statement of the above Theorem is not void.
Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])
Let $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right) \sim \overline{\mathcal{G}}_{n, m, p}$ with $m=n$, and $p=\frac{c}{n}, 0<c<1$ constant. Whp over \mathbf{R}, Weak Bipartization Algorithm terminates in $O\left(\left(n+\sum_{\ell}\left|L_{\ell}\right|\right) \cdot \log n\right)$ polynomial time.

Open Problems

Sparser Instances and Approximate Solutions

Conjecture

Let $G\left(V, E, \mathbf{R}^{T} \mathbf{R}\right) \sim \overline{\mathcal{G}}_{n, m, p}$ with $m=n$, and $p=\frac{c}{n}, 1 \leq c<e$ constant. Whp over R, Weak Bipartization Algorithm terminates in polynomial time.

Conjecture

When $n=m^{\alpha}, \alpha \leq 1$, there exists a minimum discrepancy coloring $\mathrm{x}^{(\text {disc })}$ that gives a cut $\operatorname{Cut}\left(G, \mathrm{x}^{(\text {disc })}\right)$ asymptotically equal to $\operatorname{MaxCut}(G)$ whp.

Some more General Research Questions

- Other connections between fundamental combinatorial problems and graph problems on RIGs
- Could algorithmic bottlenecks for the former be translated to bottlenecks for the latter?
- What about temporal RIGs? (definitions, problems, etc.)

Thank you for your attention!

