Selected Combinatorial Problems Through the Prism of Random Intersection Graphs Models

Paul G. Spirakis, University of Liverpool, UK

Joint work with: Sotiris Nikoletseas, University of Patras, Greece Christoforos Raptopoulos, University of Patras, Greece

13th International Conference on Algorithms and Complexity (CIAC) Larnaca, Cyprus June 13-16, 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

- Random Intersection Graphs Basic Model Definition
- Maximum Cliques in RIGs The Single Label Clique Theorem
- Weighted MAX-CUT in RIGs and Discrepancy in Random Set Systems

Open problems

Random Intersection Graphs - Basic Model Definition

Introduced in [Karoński et al., Comb. Prob. Computing, 1999]

Definition (Random intersection graph $\mathcal{G}_{n,m,p}$)

- Let \mathcal{M} be a set of m labels.
- Let V be a set of n vertices.
- Edge appearance rule:
 - To each vertex $v \in V$ we independently assign a random label subset S_v , by including each label $\ell \in \mathcal{M}$ independently with probability p.
 - We connect two vertices u, v iff $S_u \cap S_v \neq \emptyset$.

Note 1: The bipartite graph $B_{n,m,p}$ with vertex set $V \bigcup \mathcal{M}$ and edge set $\{(v, \ell) : \ell \in S_v\}$ is called associated bipartite to the $G_{n,m,p}$.

Note 2: Denote by L_{ℓ} the set of vertices having chosen label ℓ .

vertex set V

Figure:
$$S_{v_1} = \{l_1\}$$
 and $L_{l_4} = \{v_3, v_5\}$

æ

Motivation – Why RIGs

- Appropriate for network modeling in applications where there is an implied dependence between neighboring nodes:
 - social networks (vertices \leftrightarrow individuals, labels \leftrightarrow beliefs/preferences/locations)
 - oblivious resource sharing under various distributed settings
 - secure communication in sensor networks
- Edges are not independent, however...

 \rightarrow Equivalence with Erdős-Rényi random graphs: $m = n^{\alpha}, \alpha > 0$ constant

- $\alpha > 6$: $\|\mathcal{G}_{n,m,p} \mathcal{G}_{n,\hat{p}}\|_{TV} \to 0$, where $\hat{p} = 1 (1 p^2)^m$ (uncoditioned edge existence probability) [Fill et al., Rand. Struct. Algorithms, 2000]
- $\alpha \geq 3$: equivalence of sharp threshold functions [Rybarczyk, Rand. Struct. Algorithms, 2011]
- $\alpha > 1$: translation results regarding lower bounds for increasing properties [Raptopoulos, Spirakis, ISAAC, 2005]
- \rightarrow "interesting case" $m = n^{\alpha}, \alpha \leq 1$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Random Intersection Graphs Basic Model Definition
- Maximum Cliques in RIGs The Single Label Clique Theorem
- Weighted MAX-CUT in RIGs and Discrepancy in Random Set Systems

June 13-16, 2023

6 / 38

Open problems

Definition (MAX-CLIQUE)

Given a graph G = (V, E), find a clique of maximum size.

• Fundamental problem motivated by research related to the Internet, social networks, bibliographic databases, energy distribution networks, global networks of economies etc.

Arbitrary graphs:

- MAX-CLIQUE is NP-complete [Karp 1972]; fastest algorithm runs in $O(1.1888^n)$.
- It is hard to approximate [Håstad 1999]; best approximation ration is $O\left(\frac{n(\log \log n)^2}{(\log n)^3}\right)$.
- Given the maximum clique has size k it cannot be solved in time $n^{o(k)}$, unless the exponential time hypothesis fails; brute force approach takes $O(n^k k^2)$.

Finding Maximum Cliques in Random Graphs

Erdős-Rényi random graphs:

- MAX-CLIQUE remains hard in $G_{n,\frac{1}{2}}$; there is a clique of size $2 \ln n$ whp but most algorithms can only find a clique of size $\ln n$.
- Conjecture [Jerrum 1992]: finding an 1.01 ln *n* clique remains hard even if the input graph is a $G_{n,\frac{1}{2}}$ random graph in which we have planted a randomly chosen clique of size $n^{0.49}$.

Random intersection graphs:

• When $m = n^{\alpha}$, $\alpha < 1$, whp we can find a maximum clique in $G_{n,m,p}$ in polynomial time, provided the label choices are given as input (rather than just the resulting graph). [Nikoletseas, Raptopoulos, Spirakis, Comput. Sci. Rev. 2021], [Nikoletseas, Raptopoulos, Spirakis, MFCS 2012]

Label Reconstruction and the Single Label Clique Theorem

Label Reconstruction in $\mathcal{G}_{n,m,p}$

Observation: Given $G_{n,m,p}$, the associated bipartite graph is not unique! But...

Theorem ([Nikoletseas, Raptopoulos, Spirakis, Comput. Sci. Rev. 2021])

Under "mild" conditions^{*} on m, p, the bipartite graph $B_{n,m,p}$ associated to $G_{n,m,p}$ is uniquely determined whp, up to permutations of the labels.

$*$
 $m < n, \ p = \Omega \left(\sqrt{rac{1}{nm}}
ight)$ and $mp^{2} = O(1)$

Main technical idea: The Single Label Clique Theorem for maximum cliques in "dense" $G_{n,m,p}$

Theorem (Single Label Clique Theorem - SLCT [Comput. Sci. Rev. 2021])

Let $m = n^{\alpha}$, $0 < \alpha < 1$ and $mp^2 = O(1)$. Then whp, any clique Q of size $|Q| \sim np$ in $G_{n,m,p}$ is formed by a single label. In particular, the maximum clique is formed by a single label.

Note:

- For $p = o\left(\sqrt{\frac{1}{nm}}\right)$: $G_{n,m,p}$ is chordal whp [Behrisch et al. 2008] \Rightarrow finding a maximum clique is easy.
- For $p = \Omega\left(\sqrt{\frac{1}{nm}}\right)$: $G_{n,m,p}$ is <u>not chordal</u> and can be quite dense for $mp^2 = \Theta(1)$.

・ 伊 ト ・ ヨ ト ・ ヨ ト …

June 13-16, 2023

11 / 38

SLCT - proof sketch.

Two definitional tools: for disjoint $V_1, V_2 \subset V$

• $p(V_1, V_2)$: probability all edges between V_1, V_2 exist.

$$p(V_1, V_2) \le \left(|S_{V_2}^{(2)}| p + \prod_{v \in V_2} \left(1 - (1 - p)^{|S_v|} \right) \right)^{|V_1|}$$

where $S_{V_2}^{(2)}$ is the set of labels chosen by at least 2 vertices in V_2 .

• $A_{|V_1|,|V_2|}$: Event (a) $\exists \ell_0 \in \mathcal{M}$ chosen by all vertices in V_1 but none in V_2 AND (b) all edges between V_1, V_2 exist (we bound the probability of (b) by $p(V_1, V_2)$)

SLCT - proof sketch.

Rainbow coupling (contradiction) argument: Suppose a large Q is not formed by a single label.

• For any $\ell_0 \in \mathcal{M}$, we have $|Q \cap L_{\ell_0}| \leq np^{1+c}$, where $0 < c < \frac{1-\alpha}{1+\alpha}$.

single labels make only small parts of Q

SLCT - proof sketch.

Rainbow coupling (contradiction) argument: Suppose a large Q is not formed by a single label.

2 By contradiction arguments there is a <u>large rainbow</u> clique $Q' \subseteq Q$:

- edges in Q' are formed by distinct labels and
- $|Q'| \ge p^{-\frac{c}{2}}$, for any positive constant $c < \frac{1-\alpha}{1+\alpha}$.

SLCT - proof sketch.

Rainbow coupling (contradiction) argument: Suppose a large Q is not formed by a single label.

 \bigcirc By domination and the union bound, the probability that Q' exists is at most

$$\binom{n}{|Q'|} \left(1 - (1 - p^2)^m\right)^{\binom{|Q'|}{2}} = o(1).$$

Corollary

Given the label representation of $G_{n,m,p}$, we can quickly identify its maximum clique whp when $\alpha < 1$.

Open Problem: Can we find $B_{n,m,p}$ (up to permutations of the labels) when provided with just the vertices and edges of $G_{n,m,p}$?

Note: So far this is possible only for small values of m, or for sparse instances of $G_{n,m,p}$.

- Random Intersection Graphs Basic Model Definition
- Maximum Cliques in RIGs The Single Label Clique Theorem
- Weighted MAX-CUT in RIGs and Discrepancy in Random Set Systems

June 13-16, 2023

15 / 38

Open problems

Definition (Weighted Max Cut)

Input: Undirected weighted graph G(V, E, W), W is a (symmetric) weight matrix

Output: 2-coloring $x^{(max)}: V \to \{+1, -1\}$ with maximum cumulative weight of bicolor edges

$$\max_{\mathbf{x}\in\{\pm 1\}^{|V|}}\frac{1}{4}\sum_{\{i,j\}\in E}\mathsf{W}_{i,j}(x_i-x_j)^2=\texttt{MaxCut}(G)$$

Definition (Weighted Max Cut)

Input: Undirected weighted graph G(V, E, W), W is a (symmetric) weight matrix

Output: 2-coloring $x^{(max)}: V \to \{+1, -1\}$ with maximum cumulative weight of bicolor edges

$$\max_{\mathbf{x}\in\{\pm 1\}^{|V|}}\frac{1}{4}\sum_{\{i,j\}\in E}\mathsf{W}_{i,j}(x_i-x_j)^2=\texttt{MaxCut}(G)$$

- <u>Well motivated</u>: graph layout and embedding problems, minimizing Hamiltonian of spin models, VLSI design, data clustering etc.
- <u>Complexity</u>: APX-hard (cannot find a solution arbitrarily close to optimal unless P=NP)

Average Case

Can we do better when G follows a (known) probability distribution?

- Sparse Erdős-Rényi random graphs $G_{n,\frac{\gamma}{n}}$, $\gamma > 0$ constant
 - Phase transition at $\gamma = \frac{1}{2}$: MaxCut(G) is |E| O(1) whp when $\gamma < \frac{1}{2}$, and $|E| \Omega(n)$ whp when $\gamma > \frac{1}{2}$ [Coppersmith et al., Random Struct. Algorithms,2006]
 - Limiting behaviour for large γ : MaxCut(G) asymptotically equal to $(\frac{\gamma}{2} + P_*\sqrt{\frac{\gamma}{2}})n$, where $P_* \approx 0.7632$, whp. [Dembo et al., Ann. Probability,2017] (non-constructive proof)
 - Approximation algorithm: A cut of size at least $(\frac{\gamma}{2} + 0.37613\sqrt{\gamma}) n$ whp, can be constructed in polynomial time. [Coppersmith et al., Rand. Struct. Alg.,2004]

June 13-16, 2023

17 / 38

• Weighted random intersection graphs (...this talk)

Weighted Random Intersection Graphs – Definition

<u>Definition (Weighted random intersection graph</u> $\mathcal{G}_{n,m,p}$)

- Set of *n* vertices *V*, set of *m* labels \mathcal{M}
- Assign to each vertex v a random subset $S_v \subseteq \mathcal{M}$: for each $\ell \in \mathcal{M}, \Pr(\ell \in S_{\nu}) = p$, independently of all other label choices
- Let \mathbf{R}_{v} the indicator vector for S_v ; **R** is the representation matrix of our graph
- Edge $\{u, v\}$ is given weight $|S_v \cap S_u| = [\mathsf{R}^T \mathsf{R}]_{v, u}$
- $G(V, E, \mathbf{R}^T \mathbf{R})$ is a random instance of $\overline{\mathcal{G}}_{n,m,p}$

Further motivation for the weighted model Discrepancy of random set systems

- Let $L_{\ell} \subseteq V$ the set of vertices having chosen label ℓ in $G(V, E, \mathbf{R}^T \mathbf{R})$.
- Define the set system $\Sigma = \{L_{\ell_1}, L_{\ell_2}, \dots, L_{\ell_m}\}.$
- **R** is then the incidence matrix of Σ ; *V* is the universe for Σ .

Definition (Discrepancy)

Given a 2-coloring $x : V \rightarrow \{+1, -1\}$

- The imbalance of Σ on \mathbf{x} is measured by $\operatorname{disc}(\Sigma, \mathbf{x}) \stackrel{\text{def}}{=} \max_{\ell \in [m]} \left| \sum_{v \in V} \mathbf{R}_{\ell, v} \mathbf{x}_{v} \right| = \|\mathbf{R}\mathbf{x}\|_{\infty}$
- The minimum imbalance over all 2-colorings is the discrepancy of Σ disc(Σ) ^{def} min_{x∈{±1}ⁿ} disc(Σ, x)

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let Σ have incidence matrix \mathbf{R} and $G = G(V, E, \mathbf{R}^T \mathbf{R})$. If $disc(\Sigma) \leq 1$, any minimum discrepancy coloring also gives a maximum cut of G and vice versa.

Proof sketch.

Let $\operatorname{Cut}(G, \mathbf{x})$ the size of the cut defined by \mathbf{x} . By definition $\operatorname{Cut}(G, \mathbf{x}) = \frac{1}{4} \left(\sum_{i=1}^{n} \left[\mathbf{R}^{T} \mathbf{R} \right]_{i,i} - \|\mathbf{R}\mathbf{x}\|_{2}^{2} \right)$

$$\geq \frac{1}{4} \left(\sum_{i,j \in [n]^2} \left[\mathsf{R}^T \mathsf{R} \right]_{i,j} - \|\mathsf{R}\mathbf{x}\|_{\infty}^2 \right)$$
$$\geq \frac{1}{4} \left(\sum_{i,j \in [n]^2} \left[\mathsf{R}^T \mathsf{R} \right]_{i,j} - \|\mathsf{R}\mathbf{x}\|_{\infty}^2 \right)$$

with equality when $\mathbf{R}\mathbf{x}$ has only 0's and ± 1 's.

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let Σ have incidence matrix \mathbf{R} and $G = G(V, E, \mathbf{R}^T \mathbf{R})$. If disc $(\Sigma) \leq 1$, any minimum discrepancy coloring also gives a maximum cut of G and vice versa.

Conjecture

When $m = n^{\alpha}$, $\alpha \leq 1$, there exists a minimum discrepancy coloring $\mathbf{x}^{(disc)}$ that gives a cut $Cut(G, \mathbf{x}^{(disc)}) = (1 - o(1))MaxCut(G)$ whp.

• When $n > \frac{1}{\log 4} m \log m$, disc $(\Sigma) \le 1$, whp. [Altschuler,Niles-Weed, Rand. Struct. Algorithms, 2021] (non-constructive proof)

Concentration of MAX-CUT for $\alpha \leq 1$

June 13-16, 2023 21 / 38

э

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let
$$G(V, E, \mathbf{R}^T \mathbf{R}) \sim \overline{\mathcal{G}}_{n,m,p}$$
 with $m = n^{\alpha}, \alpha \leq 1$, and $p = \Omega\left(\sqrt{\frac{1}{nm}}\right)$.
Then $MaxCut(G) \approx \mathbb{E}_{\mathbf{R}}[MaxCut(G)]$ whp with respect to \mathbf{R} .

Note: This means that MaxCut(G) concentrates around its expected value.

June 13-16, 2023

22 / 38

Concentration of Max-Cut for $\alpha \leq 1$

Proof sketch.

• Let x a uniformly random 2-coloring of V.

$$\frac{1}{2}\sum_{i\neq j} \left[\mathsf{R}^{\mathsf{T}}\mathsf{R} \right]_{i,j} \geq \operatorname{MaxCut}(\mathsf{G}) \geq \mathbb{E}_{\mathsf{x}}[\operatorname{Cut}(\mathsf{G},\mathsf{x})] = \frac{1}{4}\sum_{i\neq j} \left[\mathsf{R}^{\mathsf{T}}\mathsf{R} \right]_{i,j}$$

- By linearity of expectation $\mathbb{E}_{\mathbf{R}}[\operatorname{MaxCut}(G)] = \Theta(n^2 m p^2).$
- We will use the following tool:

Theorem (Efron-Stein inequality)

Let $X_1, X_2, ..., X_n$ and $X'_1, X'_2, ..., X'_n$ be i.i.d. random variables. Let $\mathbf{X} = (X_1, ..., X_n)$ and $\mathbf{X}^{(i)} = (X_1, ..., X_{i-1}X'_i, X_{i+1}, ..., X_n)$ (i.e. $\mathbf{X}^{(i)}$ comes from \mathbf{X} by replacing X_i with an independent copy). Then, for any function $f(\mathbf{X})$,

$$Var(f(\mathbf{X})) \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\left(f(\mathbf{X}) - f(\mathbf{X}^{(i)})\right)^{2}\right]$$

Proof sketch (continued).

- Let $\mathbf{R}^{(\ell,i)}$ be equal to \mathbf{R} , but with $\mathbf{R}_{\ell,i}$ replaced by an independent Bernoulli(p) $\mathbf{R}'_{\ell,i} \to$ Define $\mathbf{G}^{(\ell,i)} = \mathbf{G}(\mathbf{V}, \mathbf{E}, (\mathbf{R}^{(\ell,i)})^T \mathbf{R}^{(\ell,i)})$.
- $\Pr(\mathsf{R}'_{\ell,i} \neq \mathsf{R}_{\ell,i}) = 2p(1-p) \text{ and } G, G^{(\ell,i)} \text{ differ in } \leq |L_{\ell} \setminus \{i\}| \text{ edges.}$
- By Efron-Stein inequality,

$$egin{aligned} & \operatorname{Var}_{\mathsf{R}}(\operatorname{MaxCut}(G)) & \leq & rac{1}{2}\sum_{\ell,i}\mathbb{E}_{\mathsf{R}}\left[\left(\operatorname{MaxCut}(G)-\operatorname{MaxCut}\left(G^{(\ell,i)}
ight)
ight)^2
ight] \ & = & O(n^3mp^3). \end{aligned}$$

• Concentration follows from Chebyshev's inequality: for any $\epsilon > 0$, $\Pr\left(|\operatorname{MaxCut}(G) - \mathbb{E}_{\mathbb{R}}[\operatorname{MaxCut}(G)]| \ge \epsilon n^2 m p^2\right) = O\left(\frac{1}{\epsilon^2 n m p}\right).$

Random Cuts for $\alpha < 1$

June 13-16, 2023 25 / 38

< A

э

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let
$$G(V, E, \mathbf{R}^T \mathbf{R}) \sim \overline{\mathcal{G}}_{n,m,p}$$
 with $m = n^{\alpha}, \alpha < 1$, and $p = \Omega\left(\sqrt{\frac{1}{nm}}\right)$.
Let $\mathbf{x}^{(rand)}$ be a uniformly random 2-coloring of V.
Whp with respect to $\mathbf{x}^{(rand)}$, \mathbf{R} ,

$$Cut(G, \mathbf{x}^{(rand)}) = (1 - o(1))MaxCut(G).$$

Proof sketch.

- Recall $Cut(G, \mathbf{x}) = \frac{1}{4} \left(\sum_{i,j \in [n]^2} \left[\mathbf{R}^T \mathbf{R} \right]_{i,j} \| \mathbf{R} \mathbf{x} \|_2^2 \right).$
- Also $\mathbb{E}_{\mathbf{R}}[MaxCut(G)] = \Theta(n^2mp^2).$

 \rightarrow Suffices to show $\|\mathbf{Rx}\|_2^2 = o(n^2 m p^2)$ whp over random x and R.

Random Cuts for $\alpha < 1$

Proof sketch (continued).

- Define $Z_{\ell} = \sum_{i \in [n]} \mathbf{R}_{\ell,i} x_i$, i.e. the ℓ -th element of $\mathbf{R} \mathbf{x}$
- Whp, for any ℓ , Z_{ℓ} has $Y_{\ell} \leq np$ non-zero terms. (Chernoff bound)
- By Hoeffding's inequality, for any $\lambda > 0$ $\Pr(|Z_{\ell}| > \lambda | Y_{\ell}) < e^{-\frac{\lambda^2}{2Y_{\ell}}}.$
- Setting $\lambda = \sqrt{6np \ln n}$,

$$\begin{aligned} \Pr(\exists \ell : |Z_{\ell}| > \lambda) &\leq \quad \Pr(\exists \ell \in [m] : Y_{\ell} > 3np) + me^{-\frac{\lambda^2}{6np}} \\ &= \quad o(1) + \frac{m}{n} = o(1). \end{aligned}$$

• Overall, whp $\|\mathbf{Rx}\|^2 \le m\lambda^2 = 6nmp \ln n = o(n^2mp^2)$.

Note: Similar proof works also for n = m and $p = \omega(\log n/n)$.

Paul Spirakis

The Majority Cut Algorithm

Large cuts in the symmetric sparse case $(m = n, p = \frac{c}{n})$ Majority Cut Algorithm

Main idea:

- Colour ϵn vertices at random;
- 2 Let C the set of coloured vertices;
- Pick v ∈ V\C and choose a colour that maximizes the cut in G[{v} ∪ C], given the colours of C:

 \rightarrow Coulour $\mathbf{x}_v = -1$ if and only if $\sum_{u \in C} [\mathbf{R}^T \mathbf{R}]_{u,v} \mathbf{x}_u \ge 0$;

• Set $C = C \cup \{v\}$ and go to step 3;

Large cuts in the symmetric sparse case $(m = n, p = \frac{c}{n})$ Majority Cut Algorithm

Main idea:

- Colour ϵn vertices at random;
- Let C the set of coloured vertices;
- Pick v ∈ V\C and choose a colour that maximizes the cut in G[{v} ∪ C], given the colours of C:
 - \rightarrow Coulour $\mathbf{x}_{v} = -1$ if and only if $\sum_{u \in C} [\mathbf{R}^{T} \mathbf{R}]_{u,v} \mathbf{x}_{u} \ge 0$;
- Set $C = C \cup \{v\}$ and go to step 3;

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let $G(V, E, \mathbf{R}^T \mathbf{R}) \sim \overline{\mathcal{G}}_{n,m,p}$ with m = n, and $p = \frac{c}{n}$, c > 0 constant. Whp with respect to \mathbf{R} , <u>Majority Cut</u> constructs a cut at least $1 + \beta$ times larger than the expected weight of a random cut, where $\beta \ge 0.43c^{-1.5}$.

3

イロト イポト イヨト イヨト

Large cuts in the symmetric sparse case $(m = n, p = \frac{c}{n})$ Majority Cut Algorithm - Analysis

Theorem

Let $G(V, E, \mathbf{R}^T \mathbf{R}) \sim \overline{\mathcal{G}}_{n,m,p}$ with m = n, and $p = \frac{c}{n}$, c > 0 constant. Whp with respect to \mathbf{R} , <u>Majority Cut</u> constructs a cut at least $1 + \beta$ times larger than the expected weight of a random cut, where $\beta \ge 0.43c^{-1.5}$.

Proof sketch.

• Let *M_t* the constructed cut size just after the consideration of the *t*-th vertex:

$$M_{t} = M_{t-1} + \frac{1}{2} \sum_{i \in [t-1]} \left[\mathsf{R}^{T} \mathsf{R} \right]_{i,t} + \frac{1}{2} \Big| \sum_{i \in [t-1]} \left[\mathsf{R}^{T} \mathsf{R} \right]_{i,t} x_{i} \Big|.$$

 \rightarrow It suffices to bound the expectation of $|Z_t| \stackrel{\text{def}}{=} \Big| \sum_{i \in [t-1]} [\mathbf{R}^T \mathbf{R}]_{i,t} x_i \Big|.$

Large cuts in the symmetric sparse case $(m = n, p = \frac{c}{n})$ Majority Cut Algorithm - Analysis

Proof sketch (continued).

• We prove that, for some Binomial random variable Z_t^B ,

 $\mathbb{E}[|Z_t| | \mathbf{x}_{[t-1]}, \mathbf{R}_{[m],[t-1]}] \geq \mathrm{MD}(Z_t^B),$

where $MD(Z_t^B) \stackrel{\text{def}}{=} \mathbb{E}[|Z_t^B - Z_t'^B|]$, where $Z_t'^B$ is an independent copy of Z_t^B ; this is called the mean absolute difference.

• By the Berry-Esseen Theorem (this is a CLT variant for normal approximation), $Z_t^B - Z_t'^B$ is approximately Normal. \rightarrow thus $|Z_t^B - Z_t'^B|$ follows approximately the folded normal distribution: $MD(Z_t^B) \ge \sqrt{\frac{c(t-1)}{3\pi n}} - o(1).$

- 4 伊 ト - 4 日 ト - 4 日 ト - -

Relating Weighted MAX-CUT in RIGs to Discrepancy of Random Set Systems

Maximum cuts in the symmetric sparse case via discrepancy

- Note $L_{\ell} = \{ v : \mathbf{R}_{\ell, v} \}$ induces a clique $K^{(\ell)}$.
- We replace G(V, E, R^TR) with the multigraph ∪⁺_ℓK^(ℓ); ∪⁺ means we keep multiplicities.
- Every edge in the multigraph is unweighted (has weight 1).

Main idea:

- Try to find a small discrepancy coloring for Σ = {L_ℓ : ℓ ∈ M} by assigning locally optimal colourings to each L_ℓ separately.
 → How can we fix colour inconsistencies?
 - Replace each clique $K^{(\ell)}$ by a random maximal matching $M^{(\ell)}$, thus getting the graph $G^{(b)} \stackrel{\text{def}}{=} \bigcup_{\ell}^{+} M^{(\ell)}$;

Main idea:

- Try to find a small discrepancy coloring for $\Sigma = \{L_{\ell} : \ell \in \mathcal{M}\}$ by assigning locally optimal colourings to each L_{ℓ} separately. \rightarrow How can we fix colour inconsistencies?
 - Replace each clique $K^{(\ell)}$ by a random maximal matching $M^{(\ell)}$, thus getting the graph $G^{(b)} \stackrel{\text{def}}{=} \bigcup_{\ell}^{+} M^{(\ell)}$;

Definition (closed vertex-label sequence)

 $\sigma := \mathsf{v}_1, \ell_1, \mathsf{v}_2, \ell_2, \cdots, \mathsf{v}_k, \ell_k, \mathsf{v}_{k+1} = \mathsf{v}_1$ is a closed vertex-label sequence in $G^{(b)}$ if

June 13-16, 2023

34 / 38

(i) it has distinct labels and vertices, and

(ii) v_i is connected to v_{i+1} in $G^{(b)}$, for all *i*.

Main idea:

- Try to find a small discrepancy coloring for $\Sigma = \{L_{\ell} : \ell \in \mathcal{M}\}$ by assigning locally optimal colourings to each L_{ℓ} separately.
 - \rightarrow How can we fix colour inconsistencies?
 - Replace each clique $K^{(\ell)}$ by a random maximal matching $M^{(\ell)}$, thus getting the graph $G^{(b)} \stackrel{\text{def}}{=} \bigcup_{\ell}^{+} M^{(\ell)}$;
 - 2 Eliminate odd-length closed vertex-label sequences $\sigma^{(odd)}$ as they include odd cycles, thus bipartiteness is violated:

 \rightarrow resample a maximal matching for $\mathcal{K}^{(\ell)}$, $\ell \in \sigma^{(\text{odd})}$ ($|L_{\ell}| \geq 3$);

Repeat step 2 until there are no odd-length vertex-label sequences (if possible);

Main idea:

- Try to find a small discrepancy coloring for $\Sigma = \{L_{\ell} : \ell \in \mathcal{M}\}$ by assigning locally optimal colourings to each L_{ℓ} separately.
 - \rightarrow How can we fix colour inconsistencies?
 - Replace each clique $K^{(\ell)}$ by a random maximal matching $M^{(\ell)}$, thus getting the graph $G^{(b)} \stackrel{\text{def}}{=} \bigcup_{\ell}^{+} M^{(\ell)}$;
 - 2 Eliminate odd-length closed vertex-label sequences $\sigma^{(odd)}$ as they include odd cycles, thus bipartiteness is violated:

 \rightarrow resample a maximal matching for $\mathcal{K}^{(\ell)}$, $\ell \in \sigma^{(\text{odd})}$ ($|L_{\ell}| \geq 3$);

Repeat step 2 until there are no odd-length vertex-label sequences (if possible);

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let $G(V, E, \mathbf{R}^T \mathbf{R}) \sim \overline{\mathcal{G}}_{n,m,p}$ with m = n, and $p = \frac{c}{n}$, c > 0 constant. Whp over \mathbf{R} , if Weak Bipartization Algorithm terminates, we can get a minimum discrepancy 2-colouring that also gives a maximum cut of G.

Note: The conditional statement of the above Theorem is not void.

Theorem ([Nikoletseas, Raptopoulos, Spirakis, ISAAC 2021])

Let $G(V, E, \mathbf{R}^T \mathbf{R}) \sim \overline{\mathcal{G}}_{n,m,p}$ with m = n, and $p = \frac{c}{n}$, 0 < c < 1 constant. Whp over \mathbf{R} , Weak Bipartization Algorithm terminates in $O((n + \sum_{\ell} |L_{\ell}|) \cdot \log n)$ polynomial time.

June 13-16, 2023

35 / 38

Conjecture

Let $G(V, E, \mathbf{R}^T \mathbf{R}) \sim \overline{\mathcal{G}}_{n,m,p}$ with m = n, and $p = \frac{c}{n}$, $1 \leq c < e$ constant. Whp over \mathbf{R} , Weak Bipartization Algorithm terminates in polynomial time.

Conjecture

When $n = m^{\alpha}$, $\alpha \leq 1$, there exists a minimum discrepancy coloring $\mathbf{x}^{(disc)}$ that gives a cut $Cut(G, \mathbf{x}^{(disc)})$ asymptotically equal to MaxCut(G) whp.

Some more General Research Questions

- Other connections between fundamental combinatorial problems and graph problems on RIGs
- Could algorithmic bottlenecks for the former be translated to bottlenecks for the latter?
- What about temporal RIGs? (definitions, problems, etc.)

Thank you for your attention!

э