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Cloud Storage (simplified)

The perfect marriage of two parties

The Data Owner O:
owns large amount of data and not enough local storage

The Storage Manager M:
owns large amount of storage and not enough data

If O and M trust each other no problem. we can go home now.

Lack of trust is much more interesting.
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Enter Encryption

O does not trust M because O’s data contain personal data.

Use Encryption

Private Key: if O is the source of data

Public Key: if data come from various sources

Data is

encrypted before being uploaded to M

decrypted when downloaded from M
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Are we done?

What if O wants to run an algorithm on the encrypted data?

Running an algorithm might reveal information on the data.

Suppose O wants to sort the data.
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Suppose O wants to sort the data.

Example

4 customers must be sorted according to revenue.

A;200 B;300 C;100 D;150

download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.
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Security

Can M link the first record in the starting configuration to its position in
the last configuration?

A;200 B;300 C;100 D;150

C;100 D;150 A;200 B;300

Giuseppe Persiano (UNISA+Google) CIAC 2023 5 / 64



Two Concepts

Indistinguishability of Swap or Not

Download, Decrypt, Swap or Not, Re-encrypt, Upload

Chosen-Plaintext Security: Standard notion of security for encryption
guarantee that M is unable to infere whether a swap has taken place.
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Enter Obliviousness

Definition (Weak Obliviousness)

An algorithm is weakly oblivious if the access pattern to data is the same
for all possible inputs of the same length.

Thanks to Wikipedia for the image
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The adversarial setting

M
O

1 2 3 4 5 6
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The adversarial setting

M
O

1 2 3 4 5 6

Decrypt one block

B4

M’s View

Down(2)
Down(5)
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The adversarial setting

M
O

1 2 3 4 5 6

Upload

M’s View

Down(2)
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The adversarial setting

M
O

1 2 3 4 5 6

Upload

M’s View

Down(2)
Down(5)
Up(2)
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A new industry

Job Opportunities for Algorithmists

Re-design all algorithms to be oblivious!

Remove all ifs, and whiles

Insertion Sort is not oblivious:
I when the last element of the array is inserted, M sees where it lands
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Hiding the Algorithm

A new threat

which algorithm is being run should also be private information

A;200 B;300 C;100 D;150
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Enter Oblivious RAM Differential Privacy

ORAM [Goldreich-Ostrovsky]

M stores n blocks of memory.

Every time O wants a block, he asks M one or more blocks.

Security notion:
I For any two block sequences B = B1, . . . ,Bn and C = C1, . . . ,Cn
I For any two access sequences I = (i1, . . . , il) and J = (j1, . . . , jl)

F performing accesses i1, . . . , il on B = B1, . . . ,Bn;
F performing access j1, . . . , jl on C = C1, . . . ,Cn

generate the same distribution of accesses to the data stored by M

For every predicate A

Prob[view← View(I ,B) : A(view) = 1]

≤ e0 · Prob[view← View(J,C) : A(view) = 1] + negl(n)
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ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

O runs the algorithm

when a block of memory is requested, O retrieves it from M using
ORAM.

Is ORAM possible at all?
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Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.
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All blocks are uploaded to M in encrypted form.
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Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B3

Access pattern independent from the block accessed
but... linear slowdown!!
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First try

Can this be made efficient?

First try: Initialization

permute blocks according to permutation π
I an encryption of Bi is uploaded in position π(i);

O keeps π private;
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First try

Can this be made efficient?

First try: Reading block i

ask M for block in position π(i);

decrypt to obtain Bi ;

re-encrypt and upload in position π(i);

Accessing block B3

B2 B4 B3 B6 B1 B5
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First try: Security

Access sequence: B1,B2,B3

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M :

Accessing block B1
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Access sequence: B1,B2,B1
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Hiding the Repetition Pattern

Initialization for N blocks
1 N real blocks B1, . . . ,BN ;

2 create M dummy blocks BN+1, . . . ,BN+M ;

3 create M stash blocks S1, . . . ,SM initialized to 0;

4 pick a random permutation π over [N + M];
5 permute real and dummy blocks according to permutation π

I an encryption of Bi is uploaded in position π(i);

6 upload all stash blocks in encrypted form;

7 initialize nxt = 1, cnt = 1;

8 π is kept private;
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Initial Configuration

B1 B2
. . . . . .BN B

N+1
B

N+2
. . . . . .B

N+M

Real Blocks Dummy Blocks Stash

0 0 . . . 0
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Initial Configuration

. . . . . . . . . 0 0 . . . 0

cnt = 1 nxt = 1 π Local to O

M’s storage

Giuseppe Persiano (UNISA+Google) CIAC 2023 19 / 64



Reading Block Bi

1 download and decrypt all M blocks in the Stash;
2 if Bi is found in the Stash then

I download dummy block π(N + cnt);
I set cnt = cnt + 1;

else
I download encrypted real block in position π(i);
I decrypt and obtain real block Bi ;
I set next available Stash block Snxt = Bi ;
I set nxt = nxt + 1;

3 re-encrypt and upload all blocks in the Stash;
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Reading Block B1

Download and decrypt all blocks from Stash

M
O

. . . . . . . . . 0 0 . . . 0

0 0 . . . 0

cnt = 1 nxt = 1 π

B1 is not found in the stash
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Reading Block B1

Download block in position π(1)

M
O
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π(1)
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Reading Block B1

Copy B1 in the Stash at position nxt

M
O

. . . . . . . . . 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

B1

Encrypt and Upload the Stash
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Reading Block B2

Download and decrypt all blocks from Stash

M
O

. . . . . . . . . 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

B2 is not found in the Stash
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Reading Block B2

Download block in position π(2)

M
O

. . . B2
. . . . . . 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

π(2)

B2

Decrypt and obtain B2
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Reading Block B2

Copy B2 in the Stash at position nxt
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B2

Encrypt and Upload the Stash
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Status after reading B1 and B2

Now read B1 again

M
O

. . . 0 . . . . . . 0 B1 B2
. . . 0

cnt = 1 nxt = 2 π

B1 is found in the Stash
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Status after reading B1 and B2

Download and decrypt all blocks from Stash
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Reading Block B1 (again)

Download block in position π(N + cnt)

M
O

. . . 0 . . . . . . 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 1 nxt = 2 π

π(N + 1)
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M
O

. . . 0 . . . . . . 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 1 nxt = 2 π

π(N + 1)

No need to decrypt
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Reading Block B1 (again)
Download block in position π(N + cnt)

M
O

. . . 0 . . . . . . 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 2 nxt = 2 π

Encrypt and Upload Stash
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Why is this oblivious?

Independently from the operation, we have the following

Download stash

Download a random location that has not been downloaded yet

Upload re-encrypted stash
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Two issues to be dealt with

What happens when the Stash is full?

How much memory does O need?
I needs to store cnt and nxt: Θ(1) memory;
I π needs O(N) memory.
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Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt π
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Overflowing the Stash
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. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt π

Randomly select a new permutation σ
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Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

Download and decrypt first blockB17
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Overflowing the Stash

M
O
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. . . 0 B1 B2
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cnt nxt σ

Tag it with σ(17) encrypt and upload

14
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Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

14

Tag it with ∞ encrypt and upload

∞
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Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

14 ∞ 11 ∞ 2 1 ∞ 8 3 ∞

Obliviously sort according to tags
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Overflowing the Stash

M
O

σ

B5 B4 B2
. . . . . . B9

. . . 0 0 . . . 0

cnt = 1 nxt = 1
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Amortized cost per read operation

Let us count:

each read costs

I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle

I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.
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In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4 bytes integers=4 Megabytes
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Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes
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Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?

I Use an ORAM!
I We only have two possible ORAMs:
I Download Stash uses the Download It ORAM to manage the Stash
I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!
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3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0

I for all l 6= levq, O asks for the next dummy in level l ;
I asks for block in posq from level levq;
I Bq is then stored in level 0 and (levq, posq) is updated;

else

I for l = 1, 2, 3, O asks for the next dummy in level l ;
I block Bq is retrieved from local stash (level 0);
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3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries

I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries

I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;
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3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage

I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes
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Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with

I N + N/2 blocks
I N/2 + N/4 blocks
I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N

I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block
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Asymptotics

Hierarchical Approach with constant client memory

O(log3 N) – Goldreich-Ostrovsky 1987-1990

O((log2 N)/ log logN) – Kushilevitz-Lu-Ostrovsky 2012

O(logN · log logN) – Patel-P-Raykova-Yeo 2018

O(logN) – Asharov-Komargodski-Lin-Nayak-Peserico-Shi 2020

Ω(log(N/C )) – Larsen-Nielsen 2018

Giuseppe Persiano (UNISA+Google) CIAC 2023 41 / 64



Asymptotics

Hierarchical Approach with constant client memory

O(log3 N) – Goldreich-Ostrovsky 1987-1990

O((log2 N)/ log logN) – Kushilevitz-Lu-Ostrovsky 2012

O(logN · log logN) – Patel-P-Raykova-Yeo 2018

O(logN) – Asharov-Komargodski-Lin-Nayak-Peserico-Shi 2020

Ω(log(N/C )) – Larsen-Nielsen 2018

Giuseppe Persiano (UNISA+Google) CIAC 2023 41 / 64



Differential Privacy ORAM

(ε, δ)-Differential Privacy

M stores n blocks of memory.

Every time O wants a block, he asks M one or more blocks.

Security notion:
I For any two block sequences B = B1, . . . ,Bn and C = C1, . . . ,Cn
I For any two access sequences i1, . . . , il and j1, . . . , jl that differ in one

position
F performing access i1, . . . , il on B = B1, . . . ,Bn;
F performing access j1, . . . , jl on C = C1, . . . ,Cn

generate the same distribution of accesses to the data stored by M

For every predicate A

Prob[view← View(I ,B) : A(view) = 1]

≤ eε · Prob[view← View(J,C) : A(view) = 1] + δ

Ω(log(N/C )) – P-Yeo 2019
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The snapshot adversary

the Server is the adversary

Snapshot Adversary

Du, Genkin, Grubbs, 2022

The adversary gets control of the Server for L consecutive operations
I Slowdown O(log L)

What if the adversary is active for more than one window?
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The snapshot adversary

Snapshot window (t, `)

A snapshot window of length ` starting at time t.

The adversary receives
I snapshot of server memory content before operation t has been

executed
I transcript of server’s operations for the following ` operations that take

place at times t, t + 1, . . . , t + `− 1.

For ` = 0, only memory content before operation t.

A (S , L)-snapshot adversary

Specifies a sequence of snaspshot windows S = ((t1, `1), . . . , (ts , `s)) such
that

s ≤ S , at most S windows,
I at most S snapshots∑
`i ≤ L, for a total duration of at most L operations
I at most L transcripts
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The Lower Bound

Theorem (P-Yeo 23)

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .
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The Lower Bound

Theorem (P-Yeo 23)

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

ε is the adversary’s advantage in the security game
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The security game

Exptn,βDS,A
Receive (O0,O1, ((t1, `1), . . . , (ts , `s))) from A0(1n).

Set L ← ∅, DS← (R1, . . . ,Rn), i ← 1.

While i ≤ |Oβ|:
I If i = tj for some 1 ≤ j ≤ s:

F Set L ← L || (memory,M).
F For k = 1, . . . , `j :

Execute DSLRead,LWrite(Ob[i ]) and set i ← i + 1.

I Else:
Execute DSRead,Write(Ob[i ]) and set i ← i + 1.

Return A1(L).

∣∣∣Pr[Exptn,0DS,A = 1]− Pr[Exptn,1DS,A = 1]
∣∣∣ ≤ ε,

for all PPT A that are (S , L)-snapshot adversaries.
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The Epoch structure

The sequence and the epochs

n logical indices

m← {n/2 + 1, . . . , n}
m writes of random b-bit blocks at indices 1, 2, . . . ,m

followed by one read.

tim
e 

rop
era

ion
s 

Iop
era

tion
 

L
 

Epoc
h Ech
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A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))
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A (3, 1)-snapshot adversary – Part 0

Ai
0(1n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation
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(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation
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A (3, 1)-snapshot adversary – Part 0

Ai
0(1n)

Randomly select integer m from [n/2, n].
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A (3, 1)-snapshot adversary – Part 1

Ui memory locations overwritten during epoch i
I by comparing the initial and final snapshot of epoch i

Vi memory locations overwritten since epoch i
I by comparing the final snapshot of epoch i with snapshot before the

read

Wi memory location overwritten during epoch i that have not been
modified when the read starts

I Wi = Ui \ Vi

Qj cells from Wi read during read(j),

|Qj | ≈ b/w
I A1 returns 0 iff |Qj | ≤ ρ · b/w
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The coding argument

Suppose
tw = o(b/w log(nb/c))

then there exists ρ > 0 such that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i .

Suppose not.
Then we can encode the r i · b bits of epoch i using fewer bits.
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The coding argument - I

A coding game

S wants to send Bi to R
I the r i blocks from epoch i

S and R share
I B−i (all except epoch i)
I randomness R to execute DS.

H(Bi |R,B−i ) = r i · b.
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The coding argument - II

S and R execute all epochs > i

write(1,B1), . . . ,write(pi − 1,Bpi−1)

12 
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The coding argument
S executes epoch i

write(pi ,Bpi ), . . . ,write(pi + r i − 1,Bpi+r i−1)

Note: R cannot execute epoch i

123 

The brown cells are in U; 

sat of memar y calls 
updated durine, 

Epoch 

Teliont 
memory 
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The coding argument
S and R execute epochs < i

I R needs some help
F client memory: c bits.

For j = pi−1, . . . ,m
I execute write(j ,Bj) touching Tj

I R needs Ui ∩ Tj (cell location and content)

1 2 3 
writels, B,) 

Telioyt 
memory 
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The coding argument
c bits + set Yi := Ui ∩ (Tpi+ri ∪ · · · ∪ Tm)

during 
Epoch 

Ercbs 

M 
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The coding argument

S memory state after write(m,Bm)

For j = pi , . . . , pi + r i − 1
I S and R execute read(j) starting from S
I R needs Qj := Wi ∩ Tm

j
I if read errs or Qj > ρb/w

F Bj is added to encoding

I else
F Qj is added to encoding
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Length of encoding

Length depends on

Set Yi

I for most epochs i , E[|Yi |] ≤ r i−1b/w

Set Qj

I By assumption |Qj | < ρ · b/w with prob ≥ 7/8

Encoding is too small
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Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i . from epoch i .
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Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

If ε = 1/16 then A outputs 1 with probability ≥ 1/16 when reading m

read(m) must touch ≥ ρ · b/w cells from epoch i

Ω(b/w · log nb/c)
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Wrapping up

Now...

If writes are fast
tw = o(b/w log(nb/c))

then read(j) in epoch i has Qj = Ω(b/w) with prob at least 1/8.

Reading 1

Must touch from each large epoch O(b/w) cells otherwise we lose security.

Ω(b/w · log(nb/c))
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(∞, 0)-snapshot secure stacks

Adversary gets snapshots of memory after all operations.

Snapshot Secure Stacks

Init()
I randomly choose encryption key K
I set cnt = 0 and top = −1.

Push(v)
I upload Enc(K , (v , top)) to location cnt
I set top← cnt
I set cnt← cnt + 1

Pop()
I download pair (v , t) from location top
I upload a dummy encryption to location cnt
I set top← t
I set cnt← cnt + 1
I return v
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(∞, 1)-snapshot secure stacks
Adversary gets snapshots of memory after all operations and one
transcript.

Snapshot Secure Stacks
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Conclusions

Θ(log(N/C )) for ORAM
I Oblivious
I DP
I Leakage
I Snapshot Adversary
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Take home items

Access pattern leakage is a privacy threat
I Metadata

It is possible to hide access pattern
I at the cost of a logarithmic slowdown

Theoretical questions:
I is there a meaningfull security notion that requires constant slowdown?
I construct oblivious algorithms for specific problems

Theoretical questions:
I can we get a practical Secure RAM for reasonable parameters?

F server memory of about 100 GigaBytes
F client memory of about 100 Megabyte
F single digit slowdown
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