The Complexity of Secure RAMs

Giuseppe Persiano

Università di Salerno and Google LLC

CIAC in Cyprus - June 15, 2023

▲ □ ▶ ▲ □ ▶ ▲ □

CIAC 2023

1/64

Giuseppe Persiano (UNISA+Google)

The perfect marriage of two parties

 The Data Owner O: owns large amount of data and not enough local storage

• The Storage Manager \mathcal{M} : owns large amount of storage and not enough data

A B > A B >

The perfect marriage of two parties

 The Data Owner O: owns large amount of data and not enough local storage

• The Storage Manager \mathcal{M} : owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The perfect marriage of two parties

 The Data Owner O: owns large amount of data and not enough local storage

• The Storage Manager \mathcal{M} : owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other

no problem. we can go home now.

A B b A B b

The perfect marriage of two parties

 The Data Owner O: owns large amount of data and not enough local storage

• The Storage Manager \mathcal{M} : owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other

no problem. we can go home now.

A B b A B b

Lack of trust is much more interesting.

 ${\mathcal O}$ does not trust ${\mathcal M}$ because ${\mathcal O}$'s data contain personal data.

 $\mathcal O$ should not trust $\mathcal M$ because $\mathcal O$'s data contain personal data.

Giuseppe Persiano (UNISA+Google)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 ${\mathcal O}$ should not trust ${\mathcal M}$ because ${\mathcal O}$'s data contain personal data.

Use Encryption

- Private Key: if \mathcal{O} is the source of data
- Public Key: if data come from various sources

* ヨト * ヨ

 ${\mathcal O}$ should not trust ${\mathcal M}$ because ${\mathcal O}$'s data contain personal data.

Use Encryption

• Private Key: if \mathcal{O} is the source of data

• Public Key: if data come from various sources

Data is

 \bullet encrypted before being uploaded to ${\cal M}$

 ${\mathcal O}$ should not trust ${\mathcal M}$ because ${\mathcal O}$'s data contain personal data.

Use Encryption

• Private Key: if \mathcal{O} is the source of data

• Public Key: if data come from various sources

Data is

- \bullet encrypted before being uploaded to ${\cal M}$
- \bullet decrypted when downloaded from ${\cal M}$

< ∃ > < ∃

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data. Suppose \mathcal{O} wants to sort the data.

A B b A B b

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data. Suppose \mathcal{O} wants to sort the data.

download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data. Suppose \mathcal{O} wants to sort the data.

download 2 and 4. decrypt, swap if out of order, re-encrypt, upload.

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data. Suppose \mathcal{O} wants to sort the data.

Example 4 customers must be sorted according to revenue. C:100 D:150 A:200 B:300

download 1 and 2. decrypt, swap if out of order, re-encrypt, upload.

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data. Suppose \mathcal{O} wants to sort the data.

download 3 and 4. decrypt, swap if out of order, re-encrypt, upload.

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data. Suppose \mathcal{O} wants to sort the data.

download 2 and 3. decrypt, swap if out of order, re-encrypt, upload.

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose \mathcal{O} wants to sort the data.

Example

4 customers must be sorted according to revenue.

A B b A B b

Security

Can ${\cal M}$ link the first record in the starting configuration to its position in the last configuration?

∃ >

Two Concepts

Indistinguishability of Swap or Not

• Download, Decrypt, Swap or Not, Re-encrypt, Upload

(4) (日本)

Two Concepts

Indistinguishability of Swap or Not

• Download, Decrypt, Swap or Not, Re-encrypt, Upload

Chosen-Plaintext Security: Standard notion of security for encryption guarantee that \mathcal{M} is unable to infere whether a swap has taken place.

A B b A B b

Enter Obliviousness

Definition (Weak Obliviousness)

An algorithm is *weakly oblivious* if the *access pattern* to data is the same for all possible inputs of the same length.

Thanks to Wikipedia for the image

★ ∃ ► < ∃ ►</p>

Giuseppe Persiano (UNISA+Google)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Giuseppe Persiano (UNISA+Google)

Giuseppe Persiano (UNISA+Google)

Giuseppe Persiano (UNISA+Google)

Giuseppe Persiano (UNISA+Google)

Giuseppe Persiano (UNISA+Google)

A new industry

Job Opportunities for Algorithmists

- Re-design all algorithms to be oblivious!
- Remove all ifs, and whiles
- Insertion Sort is not oblivious:

when the last element of the array is inserted, ${\cal M}$ sees where it lands

A new threat • which algorithm is being run should also be private information A;200 B;300 C;100 D;150

Giuseppe Persiano (UNISA+Google)

▲ □ ▶ ▲ □ ▶ ▲ □

A new threat

• which algorithm is being run should also be private information

→ 3 → 4 3

A new threat

• which algorithm is being run should also be private information

→ 3 → 4 3

A new threat

• which algorithm is being run should also be private information

→ 3 → 4 3

A new threat

• which algorithm is being run should also be private information

→ 3 → 4 3

Enter Oblivious RAM

ORAM [Goldreich-Ostrovsky]

- \mathcal{M} stores *n* blocks of memory.
- Every time $\mathcal O$ wants a block, he asks $\mathcal M$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \ldots, B_n$ and $\mathbb{C} = C_1, \ldots, C_n$
 - For any two access sequences $I = (i_1, \dots, i_l)$ and $J = (j_1, \dots, j_l)$
 - * performing accesses i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - * performing access j_1, \ldots, j_l on $\mathbb{C} = C_1, \ldots, C_n$

generate the same distribution of accesses to the data stored by ${\cal M}$
Enter Oblivious RAM

ORAM [Goldreich-Ostrovsky]

- \mathcal{M} stores *n* blocks of memory.
- Every time $\mathcal O$ wants a block, he asks $\mathcal M$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \ldots, B_n$ and $\mathbb{C} = C_1, \ldots, C_n$
 - For any two access sequences $I = (i_1, \dots, i_l)$ and $J = (j_1, \dots, j_l)$
 - * performing accesses i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - * performing access j_1, \ldots, j_l on $\mathbb{C} = C_1, \ldots, C_n$

generate the same distribution of accesses to the data stored by ${\cal M}$

For every predicate A

$$egin{aligned} &\operatorname{Prob}[\mathtt{view} \leftarrow \mathtt{View}(\emph{I}, \mathbb{B}): \emph{A}(\mathtt{view}) = 1] \ &\leq e^0 \cdot \operatorname{Prob}[\mathtt{view} \leftarrow \mathtt{View}(\emph{J}, \mathbb{C}): \emph{A}(\mathtt{view}) = 1] + \mathsf{negl}(n) \end{aligned}$$

イロト イポト イヨト イヨト

ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

- $\bullet \ \mathcal{O}$ runs the algorithm
- \bullet when a block of memory is requested, ${\cal O}$ retrieves it from ${\cal M}$ using ORAM.

.

ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

- $\bullet \ \mathcal{O}$ runs the algorithm
- \bullet when a block of memory is requested, ${\cal O}$ retrieves it from ${\cal M}$ using ORAM.

Is ORAM possible at all?

★ ∃ ▶

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

$$B_1 \quad B_2 \quad B_3 \quad B_4 \quad B_5 \quad B_6$$

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

★ ∃ ►

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

★ ∃ ► ★

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

A Trivial ORAM

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

$$\begin{bmatrix} B_1 & B_2 & B_3 & B_4 & B_5 & B_6 \end{bmatrix}$$

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

Access pattern independent from the block accessed but...

A Trivial ORAM

• All blocks are uploaded to \mathcal{M} in encrypted form.

$$B_1 \quad B_2 \quad B_3 \quad B_4 \quad B_5 \quad B_6$$

• Every time O needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

Can this be made efficient?

Giuseppe Persiano (UNISA+Google)

< □ > < □ > < □ > < □ > < □ >

Can this be made efficient?

(4) (3) (4) (4) (4)

CIAC 2023

14/64

Can this be made efficient?

CIAC 2023 14 / 64

• = • •

Can this be made efficient?

First try: Reading block i

- ask \mathcal{M} for block in position $\pi(i)$;
- decrypt to obtain B_i;
- re-encrypt and upload in position $\pi(i)$;

Accessing block B_3							
<i>B</i> ₂	<i>B</i> ₄	<i>B</i> ₃	<i>B</i> ₆	B_1	<i>B</i> ₅		

→ 3 → 4 3

Can this be made efficient?

First try: Reading block i

- ask \mathcal{M} for block in position $\pi(i)$;
- decrypt to obtain B_i ;
- re-encrypt and upload in position $\pi(i)$;

	Accessing block B_3								
<i>B</i> ₂	<i>B</i> ₄	<i>B</i> ₃	<i>B</i> ₆	<i>B</i> ₁	<i>B</i> ₅				
		<i>B</i> ₃							

(4) (3) (4) (4) (4)

<ロト < 四ト < 三ト < 三ト

▲ 重 → 重 → へへ
 CIAC 2023 16 / 64

< □ > < □ > < □ > < □ > < □ >

Giuseppe Persiano (UNISA+Google)

▲ 重 → 重 → へへ
 CIAC 2023 16 / 64

<ロト < 四ト < 三ト < 三ト

Giuseppe Persiano (UNISA+Google)

Giuseppe Persiano (UNISA+Google)

▲ 重 → 重 → へへ
 CIAC 2023 16 / 64

◆ 注 → 注 → へへ
 CIAC 2023 17 / 64

Giuseppe Persiano (UNISA+Google)

Hiding the Repetition Pattern

Initialization for N blocks

- N real blocks B_1, \ldots, B_N ;
- create *M* dummy blocks B_{N+1}, \ldots, B_{N+M} ;
- create *M* stash blocks S_1, \ldots, S_M initialized to 0;
- pick a random permutation π over [N + M];
- permute *real* and *dummy* blocks according to permutation π
 an encryption of B_i is uploaded in position π(i);
- upload all stash blocks in encrypted form;
- initialize $n \times t = 1$, cnt = 1;
- **(a)** π is kept private;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Initial Configuration

Giuseppe Persiano (UNISA+Google)

Initial Configuration

Giuseppe Persiano (UNISA+Google)

< □ > < □ > < □ > < □ > < □ >

Initial Configuration

Initial Configuration

イロト イヨト イヨト イヨト

- download and decrypt all *M* blocks in the Stash;
- **2** if B_i is found in the Stash then
 - download dummy block $\pi(N + \text{cnt})$;

```
• set cnt = cnt + 1;
```

else

b download encrypted real block in position $\pi(i)$;

★ ∃ ► ★

CIAC 2023

20 / 64

- decrypt and obtain real block B_i;
- set next available Stash block $S_{nxt} = B_i$;
- set nxt = nxt + 1;
- Ire-encrypt and upload all blocks in the Stash;

Download and decrypt all blocks from Stash

Giuseppe Persiano (UNISA+Google)

Download and decrypt all blocks from Stash

B_1 is not found in the stash

Giuseppe Persiano (UNISA+Google)

イロト イヨト イヨト イヨト

Download block in position $\pi(1)$

Giuseppe Persiano (UNISA+Google)

Download block in position $\pi(1)$

Decrypt and obtain B_1

Giuseppe Persiano (UNISA+Google)

Reading Block B_1 Copy B_1 in the Stash at position nxt

Giuseppe Persiano (UNISA+Google)

(■) ■ ○へで
 CIAC 2023 23 / 64

Reading Block B_1 Copy B_1 in the Stash at position nxt

< 回 > < 三 > < 三

э

23 / 64

CIAC 2023

Encrypt and Upload the Stash

Giuseppe Persiano (UNISA+Google)

Download and decrypt all blocks from Stash

イロト イヨト イヨト イヨト

Download and decrypt all blocks from Stash

Image: A Image: A

CIAC 2023

24 / 64

B_2 is not found in the Stash

Giuseppe Persiano (UNISA+Google)

Reading Block B_2 Download block in position $\pi(2)$

Giuseppe Persiano (UNISA+Google)

(■) ■ ○へで
 CIAC 2023 25 / 64

Reading Block B_2 Download block in position $\pi(2)$

Decrypt and obtain B_2

Giuseppe Persiano (UNISA+Google)

Reading Block B_2 Copy B_2 in the Stash at position nxt

Giuseppe Persiano (UNISA+Google)

▲ ■ ● ■
 ◆ ○ へ ○
 CIAC 2023 26 / 64

Reading Block B_2 Copy B_2 in the Stash at position nxt

イロト イポト イヨト イヨト

- 20

26 / 64

CIAC 2023

Encrypt and Upload the Stash

Giuseppe Persiano (UNISA+Google)

Reading Block B_2 Copy B_2 in the Stash at position nxt

(4) (日本)

3

26 / 64

CIAC 2023

Encrypt and Upload the Stash

Giuseppe Persiano (UNISA+Google)

Status after reading B_1 and B_2

Status after reading B_1 and B_2 Now read B_1 again

Giuseppe Persiano (UNISA+Google)

(■) ■ ジュで
 CIAC 2023 27 / 64

イロト イヨト イヨト イヨト

Status after reading B_1 and B_2

Download and decrypt all blocks from Stash

(日) (四) (日) (日) (日)

Status after reading B_1 and B_2

Download and decrypt all blocks from Stash

• • = • • = •

CIAC 2023

27 / 64

B_1 is found in the Stash

Giuseppe Persiano (UNISA+Google)

Reading Block B₁ (again)

Download block in position $\pi(N + cnt)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CIAC 2023

28 / 64

Giuseppe Persiano (UNISA+Google)

Reading Block B_1 (again)

Download block in position $\pi(N + cnt)$

No need to decrypt

Giuseppe Persiano (UNISA+Google)

<ロト <問ト < 目と < 目と

Reading Block B_1 (again)

Download block in position $\pi(N + cnt)$

< □ > < □ > < □ > < □ > < □ >

3

28 / 64

CIAC 2023

Encrypt and Upload Stash

Giuseppe Persiano (UNISA+Google)

Independently from the operation, we have the following

- Download stash
- Download a random location that has not been downloaded yet
- Upload re-encrypted stash

(4) (3) (4) (4) (4)

Two issues to be dealt with

• What happens when the Stash is full?

Giuseppe Persiano (UNISA+Google)

→ 3 → 4 3

Two issues to be dealt with

• What happens when the Stash is full?

- How much memory does \mathcal{O} need?
 - ▶ needs to store cnt and nxt: $\Theta(1)$ memory;
 - π needs O(N) memory.

(4) (3) (4) (4) (4)

Giuseppe Persiano (UNISA+Google)

Giuseppe Persiano (UNISA+Google)

▲ 重 → 重 → へへ
 CIAC 2023 31/64

Giuseppe Persiano (UNISA+Google)

Giuseppe Persiano (UNISA+Google)

(注) 注 つへの CIAC 2023 31/64

A D N A B N A B N A B N

Giuseppe Persiano (UNISA+Google)

▲ 重 → 重 → へへ
 CIAC 2023 31/64

Giuseppe Persiano (UNISA+Google)

A D N A B N A B N A B N

Giuseppe Persiano (UNISA+Google)

(■) ■ シへで
 CIAC 2023 31/64

Giuseppe Persiano (UNISA+Google)

く き き う へ (*)
CIAC 2023 31 / 64

A D N A B N A B N A B N

Giuseppe Persiano (UNISA+Google)

▲ 国 ト 国 シ へ へ CIAC 2023 31/64

Amortized cost per read operation

Let us count:

< □ > < 同 > < 回 > < Ξ > < Ξ

Amortized cost per read operation

Let us count:

• each read costs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - $\Theta(1)$ blocks of bandwidth for real/dummy blocks;

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - $\Theta(1)$ blocks of bandwidth for real/dummy blocks;

• after *M* reads, we shuffle

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after *M* reads, we shuffle
 - $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;

A B A A B A

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after *M* reads, we shuffle
 - $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - $\Theta((M + N) \log(M + N)) = \Theta(N \log N)$ blocks of bandwidth for sorting;

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after *M* reads, we shuffle
 - $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - $\Theta((M + N) \log(M + N)) = \Theta(N \log N)$ blocks of bandwidth for sorting;

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - ► Θ(1) blocks of bandwidth for real/dummy blocks;
- after *M* reads, we shuffle
 - $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M + \frac{N\log N}{M}\right)$$

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - ► Θ(1) blocks of bandwidth for real/dummy blocks;
- after *M* reads, we shuffle
 - $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M + \frac{N\log N}{M}\right)$$

for $M = \sqrt{N}$ we have

 $\sqrt{N} \cdot \log N$.

> < 三 > < 三 >

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - ► Θ(1) blocks of bandwidth for real/dummy blocks;
- after *M* reads, we shuffle
 - $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M + \frac{N\log N}{M}\right)$$

for $M = \sqrt{N}$ we have

 $\sqrt{N} \cdot \log N$.

Using AKS to sort.

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - ► Θ(1) blocks of bandwidth for real/dummy blocks;
- after *M* reads, we shuffle
 - $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - $\Theta((M + N) \log(M + N)) = \Theta(N \log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M+\frac{N\log N}{M}\right)$$

for $M = \sqrt{N}$ we have

 $\sqrt{N} \cdot \log N$.

Using AKS to sort.

Huge constant

Let us count:

- each read costs
 - $\Theta(M)$ blocks of bandwidth for the stash;
 - ► Θ(1) blocks of bandwidth for real/dummy blocks;
- after *M* reads, we shuffle
 - $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - $\Theta((M + N) \log(M + N)) = \Theta(N \log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M+\frac{N\log N}{M}\right)$$

for $M = \sqrt{N}$ we have

 $\sqrt{N} \cdot \log N$.

Using AKS to sort. In practice $\sqrt{N} \cdot \log^2 N$. Huge constant

A B F A B F

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

▲ □ ▶ ▲ □ ▶ ▲ □

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

Image: A Image: A

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

• \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

using Batcher's sort

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

using Batcher's sort

Online cost

 $2\cdot 10^3 \approx 2000$

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

using Batcher's sort

Online cost

 $2\cdot 10^3 \approx 2000$

• \mathcal{O} 's storage

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

using Batcher's sort

Online cost

 $2\cdot 10^3 \approx 2000$

- \mathcal{O} 's storage
 - cnt and nxt use constant storage

A B A A B A

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

using Batcher's sort

Online cost

 $2\cdot 10^3 \approx 2000$

- \mathcal{O} 's storage
 - cnt and nxt use constant storage
 - π requires storing 10⁶ 4 bytes integers=4 Megabytes

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

→ Ξ →

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

• \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks

★ Ξ >

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

• Online cost: 2 blocks per read

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

Online cost: 2 blocks per read
O's storage

(4) (5) (4) (5)

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

- Online cost: 2 blocks per read
- \mathcal{O} 's storage
 - cnt and nxt use constant storage

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

• Online cost: 2 blocks per read

O's storage

- cnt and nxt use constant storage
- π requires storing 10⁶ 4-byte integers=4 Megabytes

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

 $1/2\cdot 6^2\cdot 10^3\approx 18000$

• Online cost: 2 blocks per read

O's storage

- cnt and nxt use constant storage
- π requires storing 10⁶ 4-byte integers=4 Megabytes
- 1000 blocks of stash for a total of 4 Megabytes

• Use a cache (the Stash) to hide the repetition pattern

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?

→ Ξ →

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?
 - Use an ORAM!

★ Ξ ► 4

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:

★ ∃ ▶

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:
 - Download Stash uses the Download It ORAM to manage the Stash

< ∃ > <

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:
 - Download Stash uses the Download It ORAM to manage the Stash
 - Keep Stash uses the Keep It ORAM to manage the Stash

< ∃ > < ∃

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:
 - Download Stash uses the Download It ORAM to manage the Stash
 - Keep Stash uses the Keep It ORAM to manage the Stash

< ∃ > < ∃

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:
 - Download Stash uses the Download It ORAM to manage the Stash
 - Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

< ∃ > < ∃

Giuseppe Persiano (UNISA+Google)

CIAC 2023 36 / 64

Analysis

CIAC 2023 36 / 64

Querying B_q

• retrieve (lev_q, pos_q) from local memory;

イロト イヨト イヨト イヨト

Querying B_q

- retrieve (lev_q, pos_q) from local memory;
- if $\text{lev}_q \neq 0$

<ロト <問ト < 目と < 目と

Querying B_q

- retrieve (lev_q, pos_q) from local memory;
- if $lev_q \neq 0$
 - for all $l \neq lev_q$, \mathcal{O} asks for the next dummy in level *l*;

Querying B_q

- retrieve (lev_q, pos_q) from local memory;
- if $\text{lev}_q \neq 0$
 - ▶ for all $l \neq lev_q$, O asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Querying B_q

- retrieve (lev_q, pos_q) from local memory;
- if $\text{lev}_q \neq 0$
 - ▶ for all $l \neq lev_q$, O asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;
 - ▶ B_q is then stored in level 0 and (lev_q, pos_q) is updated;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Querying B_q

- retrieve (lev_q, pos_q) from local memory;
- if $lev_q \neq 0$
 - ▶ for all $l \neq lev_q$, O asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;
 - ▶ *B_q* is then stored in level 0 and (lev_q, pos_q) is updated;

else

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Querying B_q

- retrieve (lev_q, pos_q) from local memory;
- if $lev_q \neq 0$
 - ▶ for all $l \neq lev_q$, O asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;
 - ▶ *B_q* is then stored in level 0 and (lev_q, pos_q) is updated;

else

• for l = 1, 2, 3, \mathcal{O} asks for the next dummy in level l;

通 ト イ ヨ ト イ ヨ ト

Querying B_q

- retrieve (lev_q, pos_q) from local memory;
- if $lev_q \neq 0$
 - ▶ for all $l \neq lev_q$, O asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;
 - ▶ B_q is then stored in level 0 and (lev_q, pos_q) is updated;

else

- for l = 1, 2, 3, \mathcal{O} asks for the next dummy in level l;
- block B_q is retrieved from local stash (level 0);

< 同 ト < 三 ト < 三 ト

• at the start only level 3 contains real blocks;

• • • • • • • • • • • •

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries

→ Ξ →

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;

★ ∃ ►

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$

★ ∃ ►

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over *N* queries, it happens $N^{1/2}$ times

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size N^{5/6};
 - each shuffle costs $4N^{5/6}$

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size N^{5/6};
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size N^{5/6};
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - total cost: 4 · N^{7/6}

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - total cost: 4 · N^{7/6}

• level 2 is full after $N^{5/6}$ queries

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs 4N^{5/6}
 - over N queries, it happens $N^{1/3}$ times
 - total cost: 4 · N^{7/6}
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size N^{5/6};
 - each shuffle costs 4N^{5/6}
 - over N queries, it happens $N^{1/3}$ times
 - total cost: 4 · N^{7/6}
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size N^{5/6};
 - each shuffle costs 4N^{5/6}
 - over N queries, it happens $N^{1/3}$ times
 - total cost: 4 · N^{7/6}
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N
 - over N queries, it happens $N^{1/6}$ times

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size N^{5/6};
 - each shuffle costs 4N^{5/6}
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: 4 · N^{7/6}
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N
 - over N queries, it happens $N^{1/6}$ times
 - ▶ total cost: 4 · N^{7/6}

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size N^{5/6};
 - each shuffle costs 4N^{5/6}
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: 4 · N^{7/6}
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N
 - over N queries, it happens $N^{1/6}$ times
 - ▶ total cost: 4 · N^{7/6}
- Over N queries, the cost is $12 \cdot N^{7/6}$

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - total cost: 4 · N^{7/6}
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N
 - over N queries, it happens $N^{1/6}$ times
 - ▶ total cost: 4 · N^{7/6}
- Over N queries, the cost is $12 \cdot N^{7/6}$
 - each query has an amortized cost of $12N^{1/6}$ blocks;

3-level ORAM: in practice

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

• = • •

3-level ORAM: in practice

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

→ Ξ →
Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

• \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks

★ ∃ ▶

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

 $4\cdot 10^3\approx 120$

(4) (3) (4) (4) (4)

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

 $4\cdot 10^3\approx 120$

• Online cost: 3 blocks downloaded

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

 $4\cdot 10^3\approx 120$

Online cost: 3 blocks downloaded
O's storage

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

 $4\cdot 10^3\approx 120$

- Online cost: 3 blocks downloaded
- \mathcal{O} 's storage
 - cnt and nxt use constant storage

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

 $4\cdot 10^3\approx 120$

- Online cost: 3 blocks downloaded
- \mathcal{O} 's storage
 - cnt and nxt use constant storage
 - ▶ position map requires storing 10^6 6-byte integers ≈ 4 Megabytes

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

 $4\cdot 10^3\approx 120$

- Online cost: 3 blocks downloaded
- \mathcal{O} 's storage
 - cnt and nxt use constant storage
 - ▶ position map requires storing 10^6 6-byte integers \approx 4 Megabytes
 - 1000 blocks of stash for a total of 4 Megabytes

 \mathcal{O} 's memory $\approx \sqrt{N}$

• set $\rho = 1/2$

Giuseppe Persiano (UNISA+Google)

<ロト <問ト < 目と < 目と

 \mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho = 1/2$
- $1/2 \log_2 N$ levels with

<ロト <問ト < 目と < 目と

 \mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho = 1/2$
- $1/2 \log_2 N$ levels with
 - N + N/2 blocks

< □ > < □ > < □ > < □ > < □ >

- \mathcal{O} 's memory $\approx \sqrt{N}$
 - set $\rho = 1/2$
 - $1/2 \log_2 N$ levels with
 - N + N/2 blocks
 - N/2 + N/4 blocks

イロト イヨト イヨト イヨト

- \mathcal{O} 's memory $\approx \sqrt{N}$
 - set $\rho = 1/2$
 - $1/2 \log_2 N$ levels with
 - N + N/2 blocks
 - N/2 + N/4 blocks
 - ▶ ...

<ロト <問ト < 目と < 目と

- \mathcal{O} 's memory $\approx \sqrt{N}$
 - set $\rho = 1/2$
 - $1/2 \log_2 N$ levels with
 - N + N/2 blocks
 - ► N/2 + N/4 blocks
 - ▶ ...
 - $3\sqrt{N}$ blocks

イロト イヨト イヨト イヨト

- \mathcal{O} 's memory $\approx \sqrt{N}$
 - set $\rho = 1/2$
 - $1/2 \log_2 N$ levels with
 - N + N/2 blocks
 - ► N/2 + N/4 blocks
 - ▶ ...
 - $3\sqrt{N}$ blocks
 - Amortized bandwidth $0.55 \cdot \log_2 N$

・ 何 ト ・ ヨ ト ・ ヨ ト

- \mathcal{O} 's memory $\approx \sqrt{N}$
 - set $\rho = 1/2$
 - $1/2 \log_2 N$ levels with
 - N + N/2 blocks
 - ► N/2 + N/4 blocks
 - ▶ ...
 - $3\sqrt{N}$ blocks
 - Amortized bandwidth $0.55 \cdot \log_2 N$
 - For $N = 10^6$, 21 Blocks

• • = • • = •

- \mathcal{O} 's memory $\approx \sqrt{N}$
 - set $\rho = 1/2$
 - $1/2 \log_2 N$ levels with
 - N + N/2 blocks
 - ► N/2 + N/4 blocks
 - ▶ ...
 - $3\sqrt{N}$ blocks
 - Amortized bandwidth $0.55 \cdot \log_2 N$
 - For $N = 10^6$, 21 Blocks
 - OnLine bandwidth: 1 Block

• • = • • = •

Asymptotics

Hierarchical Approach with constant client memory

- O(log³ N) Goldreich-Ostrovsky 1987-1990
- $O((\log^2 N) / \log \log N)$ Kushilevitz-Lu-Ostrovsky 2012
- $O(\log N \cdot \log \log N)$ Patel-P-Raykova-Yeo 2018
- $O(\log N)$ Asharov-Komargodski-Lin-Nayak-Peserico-Shi 2020

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Asymptotics

Hierarchical Approach with constant client memory

- $O(\log^3 N)$ Goldreich-Ostrovsky 1987-1990
- $O((\log^2 N) / \log \log N)$ Kushilevitz-Lu-Ostrovsky 2012
- $O(\log N \cdot \log \log N)$ Patel-P-Raykova-Yeo 2018
- $O(\log N)$ Asharov-Komargodski-Lin-Nayak-Peserico-Shi 2020

 $\Omega(\log(N/C))$ – Larsen-Nielsen 2018

<日

<</p>

Differential Privacy

(ϵ, δ) -Differential Privacy

- \mathcal{M} stores *n* blocks of memory.
- \bullet Every time ${\cal O}$ wants a block, he asks ${\cal M}$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \ldots, B_n$ and $\mathbb{C} = C_1, \ldots, C_n$
 - For any two access sequences i_1, \ldots, i_l and j_1, \ldots, j_l that differ in one position
 - * performing access i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - * performing access j_1, \ldots, j_l on $\mathbb{C} = C_1, \ldots, C_n$

generate the same distribution of accesses to the data stored by ${\cal M}$

(日) (四) (日) (日) (日)

Differential Privacy

(ϵ, δ) -Differential Privacy

- \mathcal{M} stores *n* blocks of memory.
- \bullet Every time ${\cal O}$ wants a block, he asks ${\cal M}$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \ldots, B_n$ and $\mathbb{C} = C_1, \ldots, C_n$
 - For any two access sequences i_1, \ldots, i_l and j_1, \ldots, j_l that differ in one position
 - * performing access i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - * performing access j_1, \ldots, j_l on $\mathbb{C} = C_1, \ldots, C_n$

generate the same distribution of accesses to the data stored by ${\cal M}$

For every predicate A

$$egin{aligned} &\operatorname{Prob}[\mathtt{view} \leftarrow \mathtt{View}(I,\mathbb{B}): \mathcal{A}(\mathtt{view}) = 1] \ &\leq e^\epsilon \cdot \operatorname{Prob}[\mathtt{view} \leftarrow \mathtt{View}(J,\mathbb{C}): \mathcal{A}(\mathtt{view}) = 1] + \delta \end{aligned}$$

(日) (四) (日) (日) (日)

Differential Privacy

(ϵ, δ) -Differential Privacy

- \mathcal{M} stores *n* blocks of memory.
- \bullet Every time ${\cal O}$ wants a block, he asks ${\cal M}$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \ldots, B_n$ and $\mathbb{C} = C_1, \ldots, C_n$
 - For any two access sequences i_1, \ldots, i_l and j_1, \ldots, j_l that differ in one position
 - * performing access i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - * performing access j_1, \ldots, j_l on $\mathbb{C} = C_1, \ldots, C_n$

generate the same distribution of accesses to the data stored by ${\cal M}$

For every predicate A

$$\begin{split} &\operatorname{Prob}[\texttt{view} \leftarrow \texttt{View}(\texttt{I}, \mathbb{B}) : \texttt{A}(\texttt{view}) = 1] \\ &\leq e^{\epsilon} \cdot \operatorname{Prob}[\texttt{view} \leftarrow \texttt{View}(\texttt{J}, \mathbb{C}) : \texttt{A}(\texttt{view}) = 1] + \delta \end{split}$$

$$\Omega(\log(N/C))$$
 – P-Yeo 2019

Giuseppe Persiano (UNISA+Google)

(日) (四) (日) (日) (日)

The snapshot adversary

the Server is the adversary

Snapshot Adversary

Du, Genkin, Grubbs, 2022

- The adversary gets control of the Server for *L* consecutive operations
 - Slowdown O(log L)

The snapshot adversary

the Server is the adversary

Snapshot Adversary

Du, Genkin, Grubbs, 2022

- The adversary gets control of the Server for *L* consecutive operations
 - Slowdown O(log L)

What if the adversary is active for more than one *window*?

< ∃ > < ∃

The snapshot adversary

Snapshot window (t, ℓ)

- A snapshot window of length ℓ starting at time t.
- The adversary receives
 - snapshot of server memory content before operation t has been executed
 - ► transcript of server's operations for the following ℓ operations that take place at times $t, t + 1, ..., t + \ell 1$.
- For $\ell = 0$, only memory content before operation t.

A (S, L)-snapshot adversary

Specifies a sequence of *snaspshot windows* $S = ((t_1, \ell_1), \dots, (t_s, \ell_s))$ such that

- $s \leq S$, at most S windows,
 - at most S snapshots

• $\sum \ell_i \leq L$, for a total duration of at most L operations

at most *L* transcripts

Theorem (P-Yeo 23)

For any $0 \le \epsilon \le 1/16$, let DS be a $(3, 1, \epsilon)$ -snapshot private RAM data structure for n entries each of b bits implemented over $w = \Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_w and expected amortized read time t_r with failure probability at most 1/3, then

 $t_r + t_w = \Omega\left(b/w \cdot \log(nb/c)\right).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (P-Yeo 23)

For any $0 \le \epsilon \le 1/16$, let DS be a $(3, 1, \epsilon)$ -snapshot private RAM data structure for n entries each of b bits implemented over $w = \Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_w and expected amortized read time t_r with failure probability at most 1/3, then

 $t_r + t_w = \Omega\left(b/w \cdot \log(nb/c)\right).$

n logical blocks of *b* bits

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (P-Yeo 23)

For any $0 \le \epsilon \le 1/16$, let DS be a $(3, 1, \epsilon)$ -snapshot private RAM data structure for n entries each of b bits implemented over $w = \Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_w and expected amortized read time t_r with failure probability at most 1/3, then

$$t_r + t_w = \Omega\left(b/w \cdot \log(nb/c)\right).$$

w < b is size *physical* words

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (P-Yeo 23)

For any $0 \le \epsilon \le 1/16$, let DS be a $(3, 1, \epsilon)$ -snapshot private RAM data structure for n entries each of b bits implemented over $w = \Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_w and expected amortized read time t_r with failure probability at most 1/3, then

 $t_r + t_w = \Omega\left(b/w \cdot \log(nb/c)\right).$

Client has c bits of local memory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (P-Yeo 23)

For any $0 \le \epsilon \le 1/16$, let DS be a $(3, 1, \epsilon)$ -snapshot private RAM data structure for n entries each of b bits implemented over $w = \Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_w and expected amortized read time t_r with failure probability at most 1/3, then

$$t_r + t_w = \Omega\left(b/w \cdot \log(nb/c)\right).$$

Adversary receives at most 3 memory *snapshots* and 1 operation *transcript*

<ロト <問ト < 注ト < 注ト = 注

Theorem (P-Yeo 23)

For any $0 \le \epsilon \le 1/16$, let DS be a $(3, 1, \epsilon)$ -snapshot private RAM data structure for n entries each of b bits implemented over $w = \Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_w and expected amortized read time t_r with failure probability at most 1/3, then

$$t_r + t_w = \Omega\left(b/w \cdot \log(nb/c)\right).$$

 ϵ is the adversary's advantage in the security game

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The security game

$$\left| \mathsf{Pr}[\mathsf{Expt}_{\mathsf{DS},\mathcal{A}}^{n,0} = 1] - \mathsf{Pr}[\mathsf{Expt}_{\mathsf{DS},\mathcal{A}}^{n,1} = 1] \right| \leq \epsilon,$$

for all PPT \mathcal{A} that are (S, L)-snapshot adversaries.

The Epoch structure

The sequence and the epochs

- n logical indices
- $m \leftarrow \{n/2+1,\ldots,n\}$
- *m* writes of random *b*-bit blocks at indices 1, 2, ..., *m*
- followed by one read.

• Two sequences of operations O_0, O_1

э

< □ > < 同 > < 回 > < Ξ > < Ξ

- Two sequences of operations O_0, O_1
 - ▶ Both write **random** blocks to the first *m* indices

(4) (3) (4) (4) (4)

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - O₀ reads index 1

• • = • • =

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the *i*-th epoch

→ 3 → 4 3

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - ► O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the i-th epoch
- correctness of O₁

touch about b/w cells updated in epoch *i*

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the i-th epoch
- correctness of O₁

touch about b/w cells updated in epoch *i*

• epochs preceding epoch *i* are **independent**

- Two sequences of operations O₀, O₁
 - Both write random blocks to the first m indices
 - O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the i-th epoch
- correctness of O₁

touch about b/w cells updated in epoch *i*

- epochs preceding epoch i are independent
- epochs following epoch i are not large enough

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the i-th epoch
- correctness of O₁

touch about b/w cells updated in epoch *i*

- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - ► O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the i-th epoch
- correctness of O₁

touch about b/w cells updated in epoch *i*

- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_0

read of O_0 does not depend on epoch *i*

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the i-th epoch
- correctness of O₁

touch about b/w cells updated in epoch *i*

- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_0

read of O_0 does not depend on epoch *i*

security

but if it does not, then security fails

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - ► O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the i-th epoch
- correctness of O₁

touch about b/w cells updated in epoch *i*

- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_0

read of O_0 does not depend on epoch *i*

security

but if it does not, then security fails

• final step

this holds for all epochs except for those that have fewer than c/b writes.

イロト 不得 トイラト イラト 一日

- Two sequences of operations O_0, O_1
 - Both write random blocks to the first m indices
 - ► O₀ reads index 1
 - O_1 reads a randomly selected index *j* written in the i-th epoch
- correctness of O₁

touch about b/w cells updated in epoch *i*

- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_0

read of O_0 does not depend on epoch *i*

security

but if it does not, then security fails

• final step

this holds for all epochs except for those that have fewer than c/b writes.

• we have a lower bound $\Omega(b/w \cdot \log(nb/c))_{a \to a \to b}$

$\mathcal{A}_0^i(1^n)$

- Randomly select integer m from [n/2, n].
- Randomly and ind. select $B_1, \ldots, B_m \leftarrow \{0, 1\}^b$.
- Set $O_0 = (write(1, B_1), \dots, write(m, B_m), read(m)).$
- Randomly select $j \in [p_i, p_i + r^i 1]$,
- Set $O_1 = (write(1, B_1), ..., write(m, B_m), read(j)).$
- Set $S = ((p_i, 0), (p_i + r^i, 0), (m + 1, 1)).$
- Return (O_0, O_1, S) .

イロト 不得下 イヨト イヨト

$\mathcal{A}_0^i(1^n)$

- Randomly select integer m from [n/2, n].
- Randomly and ind. select $B_1, \ldots, B_m \leftarrow \{0, 1\}^b$.
- Set $O_0 = (write(1, B_1), \dots, write(m, B_m), read(m))$.
- Randomly select $j \in [p_i, p_i + r^i 1]$,
- Set $O_1 = (write(1, B_1), ..., write(m, B_m), read(j)).$
- Set $S = ((p_i, 0), (p_i + r^i, 0), (m + 1, 1)).$
- Return (*O*₀, *O*₁, *S*).
- $(p_i, 0)$: snapshot of server memory before epoch i

$\mathcal{A}_0^i(1^n)$

- Randomly select integer m from [n/2, n].
- Randomly and ind. select $B_1, \ldots, B_m \leftarrow \{0, 1\}^b$.
- Set $O_0 = (write(1, B_1), \dots, write(m, B_m), read(m))$.
- Randomly select $j \in [p_i, p_i + r^i 1]$,
- Set $O_1 = (write(1, B_1), ..., write(m, B_m), read(j)).$
- Set $S = ((p_i, 0), (p_i + r^i, 0), (m + 1, 1)).$
- Return (*O*₀, *O*₁, *S*).
- $(p_i, 0)$: snapshot of server memory before epoch *i*
- $(p_i + r^i, 0)$: snapshot of server memory after epoch *i*

$\mathcal{A}_0^i(1^n)$

- Randomly select integer m from [n/2, n].
- Randomly and ind. select $B_1, \ldots, B_m \leftarrow \{0, 1\}^b$.
- Set $O_0 = (write(1, B_1), \dots, write(m, B_m), read(m)).$
- Randomly select $j \in [p_i, p_i + r^i 1]$,
- Set $O_1 = (write(1, B_1), ..., write(m, B_m), read(j)).$
- Set $S = ((p_i, 0), (p_i + r^i, 0), (m + 1, 1)).$
- Return (*O*₀, *O*₁, *S*).
- $(p_i, 0)$: snapshot of server memory before epoch *i*
- $(p_i + r^i, 0)$: snapshot of server memory after epoch *i*
- (m+1,1): snapshot before read and transcript of read operation

$\mathcal{A}_0^i(1^n)$

- Randomly select integer m from [n/2, n].
- Randomly and ind. select $B_1, \ldots, B_m \leftarrow \{0, 1\}^b$.
- Set $O_0 = (write(1, B_1), \dots, write(m, B_m), read(m))$.
- Randomly select $j \in [p_i, p_i + r^i 1]$,
- Set $O_1 = (write(1, B_1), ..., write(m, B_m), read(j)).$
- Set $S = ((p_i, 0), (p_i + r^i, 0), (m + 1, 1)).$
- Return (*O*₀, *O*₁, *S*).
- $(p_i, 0)$: snapshot of server memory before epoch *i*
- $(p_i + r^i, 0)$: snapshot of server memory after epoch *i*
- (m+1,1): snapshot before read and transcript of read operation

イロト 不得 トイヨト イヨト 二日

Important

- U_i memory locations overwritten during epoch i
 - by comparing the initial and final snapshot of epoch i
- V_i memory locations overwritten since epoch i
 - by comparing the final snapshot of epoch i with snapshot before the read
- *W_i* memory location overwritten during epoch *i* that have not been modified when the read starts

• $W_i = U_i \setminus V_i$

- Q_j cells from W_i read during read(j),
- $|Q_j| \approx b/w$
 - \mathcal{A}^1 returns 0 iff $|Q_j| \leq \rho \cdot b/w$

< 回 > < 回 > < 回 >

Suppose

$$t_w = o(b/w \log(nb/c))$$

then there exists $\rho > 0$ such that, for most epochs *i*,

 $|Q_j| \ge \rho \cdot b/w$

with probability $\geq 1/8$ for *j* in epoch *i*.

< □ > < 同 > < 回 > < 回 > < 回 >

Suppose

$$t_w = o(b/w \log(nb/c))$$

then there exists $\rho > 0$ such that, for most epochs *i*,

 $|Q_j| \ge \rho \cdot b/w$

with probability $\geq 1/8$ for *j* in epoch *i*.

Suppose not.

イロト イポト イヨト イヨト

Suppose

$$t_w = o(b/w \log(nb/c))$$

then there exists $\rho > 0$ such that, for most epochs *i*,

 $|Q_j| \ge \rho \cdot b/w$

with probability $\geq 1/8$ for *j* in epoch *i*.

Suppose not. Then we can encode the $r^i \cdot b$ bits of epoch *i* using fewer bits.

イロト イボト イヨト イヨト

A coding game

- S wants to send Bⁱ to R
 - the rⁱ blocks from epoch i
- S and R share
 - B⁻ⁱ (all except epoch i)
 - randomness $\mathcal R$ to execute DS.

$$\mathcal{H}(\mathsf{B}^{i}|\mathcal{R},\mathsf{B}^{-i})=r^{i}\cdot b.$$

★ Ξ >

The coding argument - II

• S and R execute all epochs > i

write $(1, B_1), \ldots, write(p_i - 1, B_{p_i - 1})$

(■) ■ ⑦ Q C
 C
 IAC 2023 53 / 64

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• S executes epoch *i*

write
$$(p_i, B_{p_i}), \ldots, write(p_i + r^i - 1, B_{p_i + r^i - 1})$$

• Note: R cannot execute epoch *i*

- S and R execute epochs < i
 - R needs some help
 - ★ client memory: c bits.
- For $j = p_{i-1}, ..., m$

....

- execute write(j, B_j) touching T_j
- ▶ R needs $U_i \cap T_j$ (cell location and content)

• c bits + set $Y_i := U_i \cap (T_{p_i+r_i} \cup \cdots \cup T_m)$

S memory state after write (m, B_m)

- For $j = p_i, ..., p_i + r^i 1$
 - S and R execute read(j) starting from S
 - R needs $Q_j := W_i \cap T_i^m$
 - if read errs or $Q_j > \rho b/w$
 - ★ B_j is added to encoding
 - else
 - ★ Q_j is added to encoding

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Length of encoding

Length depends on

- Set Y_i
 - for most epochs *i*, $\mathbb{E}[|Y_i|] \leq r^{i-1}b/w$
- Set Q_j
 - By assumption $|Q_j| < \rho \cdot b/w$ with prob $\geq 7/8$

イロト イポト イヨト イヨト

Length of encoding

Length depends on

- Set Y_i
 - for most epochs *i*, $\mathbb{E}[|Y_i|] \leq r^{i-1}b/w$
- Set Q_j
 - By assumption $|Q_j| < \rho \cdot b/w$ with prob $\geq 7/8$

Encoding is too small

 $t_w = o(b/w\log(nb/c))$

implies that, for most epochs *i*,

 $|Q_j| \ge \rho \cdot b/w$

with probability $\geq 1/8$ for *j* in epoch *i*. from epoch *i*.

 $t_w = o(b/w\log(nb/c))$

implies that, for most epochs *i*,

 \mathcal{A} outputs 1 with probability $\geq 1/8$ when reading j from epoch i.

A D N A B N A B N A B N

 $t_w = o(b/w\log(nb/c))$

implies that, for most epochs i,

 \mathcal{A} outputs 1 with probability $\geq 1/8$ when reading *j* from epoch *i*.

If $\epsilon = 1/16$ then \mathcal{A} outputs 1 with probability $\geq 1/16$ when reading *m*

イロト イポト イヨト イヨト 二日

 $t_w = o(b/w\log(nb/c))$

implies that, for most epochs *i*,

 \mathcal{A} outputs 1 with probability $\geq 1/8$ when reading *j* from epoch *i*.

If $\epsilon = 1/16$ then \mathcal{A} outputs 1 with probability $\geq 1/16$ when reading *m*

read(m) must touch $\geq \rho \cdot b/w$ cells from epoch i

 $t_w = o(b/w\log(nb/c))$

implies that, for most epochs *i*,

 \mathcal{A} outputs 1 with probability $\geq 1/8$ when reading *j* from epoch *i*.

If $\epsilon = 1/16$ then \mathcal{A} outputs 1 with probability $\geq 1/16$ when reading mread(m) must touch $\geq \rho \cdot b/w$ cells from epoch i

 $\Omega(b/w \cdot \log nb/c)$

Wrapping up

Now...

If writes are fast

 $t_w = o(b/w\log(nb/c))$

then read(j) in epoch i has $Q_i = \Omega(b/w)$ with prob at least 1/8.

Wrapping up

Now...

If writes are fast

 $t_w = o(b/w\log(nb/c))$

then read(j) in epoch i has $Q_j = \Omega(b/w)$ with prob at least 1/8.

Reading 1

Must touch from each large epoch O(b/w) cells otherwise we lose security.

 $\Omega(b/w \cdot \log(nb/c))$

★御★ ★注★ ★注★ 二日

$(\infty, 0)$ -snapshot secure stacks

Adversary gets snapshots of memory after all operations.

```
Snapshot Secure Stacks
  Init()
       randomly choose encryption key K
       ▶ set cnt = 0 and top = -1.
  • Push(v)
       • upload Enc(K, (v, top)) to location cnt
       ▶ set top \leftarrow cnt
       ▶ set cnt \leftarrow cnt + 1
  Pop()
        • download pair (v, t) from location top
       upload a dummy encryption to location cnt
       ▶ set top \leftarrow t
       ▶ set cnt \leftarrow cnt + 1
       return v
```

イロト イヨト イヨト イヨト

$(\infty, 1)$ -snapshot secure stacks

Adversary gets snapshots of memory after all operations and one transcript.

< □ > < 同 > < 回 > < 回 > < 回 >

$(\infty,1)$ -snapshot secure stacks

Adversary gets snapshots of memory after all operations and one transcript.

```
Snapshot Secure Stacks

    Init()

        randomly choose seed S
        randomly choose encryption key K
        set cnt = 0 and top = -1.
  • Push(v)
        b download from location F(S, top) and discard
        • upload \text{Enc}(K, (v, \text{top})) to location F(S, \text{cnt})
        ▶ top \leftarrow cnt
        \triangleright cnt \leftarrow cnt + 1
  • Pop()
        download pair (v, t) from location F(S, top)
        • upload dummy encryption at location F(S, cnt)
        ▶ set top \leftarrow t
        ▶ set cnt \leftarrow cnt + 1
```

Conclusions

• $\Theta(\log(N/C))$ for ORAM

- Oblivious
- DP
- Leakage
- Snapshot Adversary

イロト イヨト イヨト イヨト
Take home items

Access pattern leakage is a privacy threat

- Metadata
- It is possible to hide access pattern
 - at the cost of a logarithmic slowdown
- Theoretical questions:
 - ▶ is there a meaningfull security notion that requires constant slowdown?
 - construct oblivious algorithms for specific problems
- Theoretical questions:
 - can we get a practical Secure RAM for reasonable parameters?
 - ★ server memory of about 100 GigaBytes
 - ★ client memory of about 100 Megabyte
 - ★ single digit slowdown

A B b A B b