The Complexity of Secure RAMs

Giuseppe Persiano

Università di Salerno and Google LLC

CIAC in Cyprus - June 15, 2023

Cloud Storage (simplified)

The perfect marriage of two parties

- The Data Owner \mathcal{O} :
owns large amount of data and not enough local storage
- The Storage Manager \mathcal{M} :
owns large amount of storage and not enough data

Cloud Storage (simplified)

The perfect marriage of two parties

- The Data Owner \mathcal{O} :
owns large amount of data and not enough local storage
- The Storage Manager \mathcal{M} : owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other

Cloud Storage (simplified)

The perfect marriage of two parties

- The Data Owner \mathcal{O} :
owns large amount of data and not enough local storage
- The Storage Manager \mathcal{M} : owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other no problem. we can go home now.

Cloud Storage (simplified)

The perfect marriage of two parties

- The Data Owner \mathcal{O} :
owns large amount of data and not enough local storage
- The Storage Manager M: owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other
no problem. we can go home now.

Lack of trust is much more interesting.

Enter Encryption

\mathcal{O} does not trust \mathcal{M} because \mathcal{O} 's data contain personal data.

Enter Encryption

\mathcal{O} should not trust \mathcal{M} because \mathcal{O} 's data contain personal data.

Enter Encryption

\mathcal{O} should not trust \mathcal{M} because \mathcal{O} 's data contain personal data.

Use Encryption

- Private Key: if \mathcal{O} is the source of data
- Public Key: if data come from various sources

Enter Encryption

\mathcal{O} should not trust \mathcal{M} because \mathcal{O} 's data contain personal data.

Use Encryption

- Private Key: if \mathcal{O} is the source of data
- Public Key: if data come from various sources

Data is

- encrypted before being uploaded to \mathcal{M}

Enter Encryption

\mathcal{O} should not trust \mathcal{M} because \mathcal{O} 's data contain personal data.

Use Encryption

- Private Key: if \mathcal{O} is the source of data
- Public Key: if data come from various sources

Data is

- encrypted before being uploaded to \mathcal{M}
- decrypted when downloaded from \mathcal{M}

Are we done?

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose \mathcal{O} wants to sort the data.

Are we done?

What if \mathcal{O} wants to run an algorithm on the encrypted data?
Running an algorithm might reveal information on the data.
Suppose \mathcal{O} wants to sort the data.

Example

4 customers must be sorted according to revenue.

$\mathrm{A} ; 200$	$\mathrm{~B} ; 300$	$\mathrm{C} ; 100 \quad \mathrm{D} ; 150$

download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.

Are we done?

What if \mathcal{O} wants to run an algorithm on the encrypted data?
Running an algorithm might reveal information on the data.
Suppose \mathcal{O} wants to sort the data.

Example

4 customers must be sorted according to revenue.

$\mathrm{C} ; 100$	$\mathrm{~B} ; 300$	$\mathrm{~A} ; 200$	$\mathrm{D} ; 150$

download 2 and 4. decrypt, swap if out of order, re-encrypt, upload.

Are we done?

What if \mathcal{O} wants to run an algorithm on the encrypted data?
Running an algorithm might reveal information on the data.
Suppose \mathcal{O} wants to sort the data.

Example

4 customers must be sorted according to revenue.

$\mathrm{C} ; 100$	$\mathrm{D} ; 150$	$\mathrm{~A} ; 200$
$\mathrm{~B} ; 300$		

download 1 and 2. decrypt, swap if out of order, re-encrypt, upload.

Are we done?

What if \mathcal{O} wants to run an algorithm on the encrypted data?
Running an algorithm might reveal information on the data.
Suppose \mathcal{O} wants to sort the data.

Example

4 customers must be sorted according to revenue.

$\mathrm{C} ; 100$	$\mathrm{D} ; 150$	$\mathrm{~A} ; 200$	$\mathrm{~B} ; 300$

download 3 and 4. decrypt, swap if out of order, re-encrypt, upload.

Are we done?

What if \mathcal{O} wants to run an algorithm on the encrypted data?
Running an algorithm might reveal information on the data.
Suppose \mathcal{O} wants to sort the data.

Example

4 customers must be sorted according to revenue.

$\mathrm{C} ; 100$	$\mathrm{D} ; 150$	$\mathrm{~A} ; 200$	$\mathrm{~B} ; 300$

download 2 and 3. decrypt, swap if out of order, re-encrypt, upload.

Are we done?

What if \mathcal{O} wants to run an algorithm on the encrypted data?
Running an algorithm might reveal information on the data.
Suppose \mathcal{O} wants to sort the data.
Example
4 customers must be sorted according to revenue.

| $\mathrm{C} ; 100$ | $\mathrm{D} ; 150 \quad \mathrm{~A} ; 200 \quad \mathrm{~B} ; 300$ |
| :--- | :--- | :--- |

Security

Can \mathcal{M} link the first record in the starting configuration to its position in the last configuration?

Two Concepts

Indistinguishability of Swap or Not

- Download, Decrypt, Swap or Not, Re-encrypt, Upload

Two Concepts

Indistinguishability of Swap or Not

- Download, Decrypt, Swap or Not, Re-encrypt, Upload

Chosen-Plaintext Security: Standard notion of security for encryption guarantee that \mathcal{M} is unable to infere whether a swap has taken place.

Enter Obliviousness

Definition (Weak Obliviousness)

An algorithm is weakly oblivious if the access pattern to data is the same for all possible inputs of the same length.

Thanks to Wikipedia for the image

The adversarial setting

$$
\begin{gathered}
\mathcal{M} \\
\mathcal{O}
\end{gathered}
$$

The adversarial setting

Download one or more blocks
M
\mathcal{O}

The adversarial setting

A new industry

Job Opportunities for Algorithmists

- Re-design all algorithms to be oblivious!
- Remove all ifs, and whiles
- Insertion Sort is not oblivious: when the last element of the array is inserted, \mathcal{M} sees where it lands

Hiding the Algorithm

A new threat

- which algorithm is being run should also be private information

$$
\begin{array}{llll}
\mathrm{A} ; 200 & \mathrm{~B} ; 300 & \mathrm{C} ; 100 & \mathrm{D} ; 150
\end{array}
$$

Hiding the Algorithm

A new threat

- which algorithm is being run should also be private information

$$
\begin{array}{llll}
\mathrm{A} ; 200 & \mathrm{~B} ; 300 & \mathrm{C} ; 100 & \mathrm{D} ; 150
\end{array}
$$

Hiding the Algorithm

A new threat

- which algorithm is being run should also be private information

$$
\begin{array}{l|l|l|l}
\mathrm{A} ; 200 & \mathrm{~B} ; 300 & \mathrm{C} ; 100 & \mathrm{D} ; 150
\end{array}
$$

Hiding the Algorithm

A new threat

- which algorithm is being run should also be private information

$$
\begin{array}{l|l|l|l}
\mathrm{A} ; 200 & \mathrm{~B} ; 300 & \mathrm{C} ; 100 & \mathrm{D} ; 150
\end{array}
$$

Hiding the Algorithm

A new threat

- which algorithm is being run should also be private information

$$
\begin{array}{llll}
\mathrm{A} ; 200 & \mathrm{~B} ; 300 & \mathrm{C} ; 100 & \mathrm{D} ; 150
\end{array}
$$

Enter Oblivious RAM

ORAM [Goldreich-Ostrovsky]

- \mathcal{M} stores n blocks of memory.
- Every time \mathcal{O} wants a block, he asks \mathcal{M} one or more blocks.
- Security notion:
- For any two block sequences $\mathbb{B}=B_{1}, \ldots, B_{n}$ and $\mathbb{C}=C_{1}, \ldots, C_{n}$

For any two access sequences $I=\left(i_{1}, \ldots, i_{l}\right)$ and $J=\left(j_{1}, \ldots, j_{l}\right)$

* performing accesses $i_{1}, \ldots, i_{\text {}}$ on $\mathbb{B}=B_{1}, \ldots, B_{n}$;
* performing access j_{1}, \ldots, j_{l} on $\mathbb{C}=C_{1}, \ldots, C_{n}$
generate the same distribution of accesses to the data stored by \mathcal{M}

Enter Oblivious RAM

ORAM [Goldreich-Ostrovsky]

- \mathcal{M} stores n blocks of memory.
- Every time \mathcal{O} wants a block, he asks \mathcal{M} one or more blocks.
- Security notion:

For any two block sequences $\mathbb{B}=B_{1}, \ldots, B_{n}$ and $\mathbb{C}=C_{1}, \ldots, C_{n}$
For any two access sequences $I=\left(i_{1}, \ldots, i_{l}\right)$ and $J=\left(j_{1}, \ldots, j_{l}\right)$

* performing accesses $i_{1}, \ldots, i_{\text {}}$ on $\mathbb{B}=B_{1}, \ldots, B_{n}$;
* performing access j_{1}, \ldots, j_{l} on $\mathbb{C}=C_{1}, \ldots, C_{n}$
generate the same distribution of accesses to the data stored by \mathcal{M}
For every predicate A

$$
\begin{aligned}
& \operatorname{Prob}[\text { view } \leftarrow \operatorname{View}(I, \mathbb{B}): A(\text { view })=1] \\
& \quad \leq e^{0} \cdot \operatorname{Prob}[\operatorname{view} \leftarrow \operatorname{View}(J, \mathbb{C}): A(\text { view })=1]+\operatorname{neg}(n)
\end{aligned}
$$

ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

- \mathcal{O} runs the algorithm
- when a block of memory is requested, \mathcal{O} retrieves it from \mathcal{M} using ORAM.

ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

- \mathcal{O} runs the algorithm
- when a block of memory is requested, \mathcal{O} retrieves it from \mathcal{M} using ORAM.

Is ORAM possible at all?

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

| B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

$$
\begin{gathered}
\text { Accessing block } B_{3} \\
B_{1} \\
B_{2} \\
B_{3} \\
B_{4} \\
B_{5} \\
B_{6}
\end{gathered}
$$

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

| B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

| B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

| B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

| B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

| B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

| B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

$$
\begin{gathered}
\text { Accessing block } B_{3} \\
\begin{array}{|c|c|c|c|c|}
\hline B_{1} & B_{2} & B_{3} & B_{4} & B_{5} \\
\hline & B_{6} \\
\cline { 1 - 6 } & & & B_{6} \\
\hline
\end{array}
\end{gathered}
$$

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

| B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

$$
\begin{gathered}
\text { Accessing block } B_{3} \\
\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3} \\
B_{4} \\
B_{3}
\end{array} \\
\end{gathered}
$$

Access pattern independent from the block accessed but...

Yes! This is possible!

A Trivial ORAM

- All blocks are uploaded to \mathcal{M} in encrypted form.

B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}

- Every time \mathcal{O} needs to access block B_{i}, all the blocks are downloaded and all except for B_{i} are discarded.

$$
\begin{gathered}
\text { Accessing block } B_{3} \\
\begin{array}{|l|l|l|l|}
B_{1} & B_{2} & B_{3} & B_{4} \\
B_{5} & B_{6} \\
B_{3}
\end{array}
\end{gathered}
$$

Access pattern independent from the block accessed but...

First try

Can this be made efficient?

First try

Can this be made efficient?

First try: Initialization

- permute blocks according to permutation π
an encryption of B_{i} is uploaded in position $\pi(i)$;

$$
\begin{array}{|l|lllll}
\hline B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} \\
\hline
\end{array}
$$

- \mathcal{O} keeps π private;

First try

Can this be made efficient?

First try: Initialization

- permute blocks according to permutation π
- an encryption of B_{i} is uploaded in position $\pi(i)$;

$$
\begin{array}{|llllll}
B_{2} & B_{4} & B_{3} & B_{6} & B_{1} & B_{5} \\
\hline
\end{array}
$$

- \mathcal{O} keeps π private;

First try

Can this be made efficient?

First try: Reading block i

- ask \mathcal{M} for block in position $\pi(i)$;
- decrypt to obtain B_{i};
- re-encrypt and upload in position $\pi(i)$;

First try

Can this be made efficient?

First try: Reading block i

- ask \mathcal{M} for block in position $\pi(i)$;
- decrypt to obtain B_{i};
- re-encrypt and upload in position $\pi(i)$;

First try: Security

Access sequence: B_{1}, B_{2}, B_{3}
Accessing block B_{1}

1	2	3	4	5	6
B_{2}	B_{4}	B_{3}	B_{6}	B_{1}	B_{5}

Access pattern seen by \mathcal{M} :

First try: Security

Access sequence: B_{1}, B_{2}, B_{3}
Accessing block B_{1}

Access pattern seen by $\mathcal{M}: 5$

First try: Security

Access sequence: B_{1}, B_{2}, B_{3}
Accessing block B_{2}

1	2	3	4	5	6
B_{2}	B_{4}	B_{3}	B_{6}	B_{1}	B_{5}

Access pattern seen by $\mathcal{M}: 5$

First try: Security

Access sequence: B_{1}, B_{2}, B_{3}
Accessing block B_{2}

Access pattern seen by $\mathcal{M}: 5,1$

First try: Security

Access sequence: B_{1}, B_{2}, B_{3}
Accessing block B_{3}

1	2	3	4	5	6
B_{2}	B_{4}	B_{3}	B_{6}	B_{1}	B_{5}

Access pattern seen by $\mathcal{M}: 5,1$

First try: Security

Access sequence: B_{1}, B_{2}, B_{3}
Accessing block B_{3}

$$
B_{3}
$$

Access pattern seen by $\mathcal{M}: 5,1,3$

First try: Security

Access sequence: B_{1}, B_{2}, B_{3}

$$
\begin{array}{ccccccc|}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline B_{2} & B_{4} & B_{3} & B_{6} & B_{1} & B_{5} \\
\hline
\end{array}
$$

Access pattern seen by $\mathcal{M}: x, y, z$

First try: Security

Access sequence: B_{1}, B_{2}, B_{1}
Accessing block B_{1}

1	2	3	4	5	6
B_{2}	B_{4}	B_{3}	B_{6}	B_{1}	B_{5}

Access pattern seen by \mathcal{M} :

First try: Security

Access sequence: B_{1}, B_{2}, B_{1}
Accessing block B_{1}

Access pattern seen by $\mathcal{M}: 5$

First try: Security

Access sequence: B_{1}, B_{2}, B_{1}
Accessing block B_{2}

1	2	3	4	5	6
B_{2}	B_{4}	B_{3}	B_{6}	B_{1}	B_{5}

Access pattern seen by $\mathcal{M}: 5$

First try: Security

Access sequence: B_{1}, B_{2}, B_{1}

Accessing blockB 1 1

First try: Security

Access sequence: B_{1}, B_{2}, B_{1}

Access pattern seen by $\mathcal{M}: 5,1$

First try: Security

Access sequence: B_{1}, B_{2}, B_{1}
Accessing block B_{1}

Access pattern seen by $\mathcal{M}: 5,1,5$

First try: Security

Access sequence: B_{1}, B_{2}, B_{1}

Access pattern seen by $\mathcal{M}: x, y, x$

Hiding the Repetition Pattern

Initialization for N blocks

(1) N real blocks B_{1}, \ldots, B_{N};
(2) create M dummy blocks B_{N+1}, \ldots, B_{N+M};
(3) create M stash blocks S_{1}, \ldots, S_{M} initialized to 0 ;
(9) pick a random permutation π over $[N+M]$;
(5) permute real and dummy blocks according to permutation π - an encryption of B_{i} is uploaded in position $\pi(i)$;
(0) upload all stash blocks in encrypted form;
(3) initialize $n \times t=1$, cnt $=1$;
(8) π is kept private;

Initial Configuration

Initial Configuration

Initial Configuration

Initial Configuration

Reading Block B_{i}

(1) download and decrypt all M blocks in the Stash;
(2) if B_{i} is found in the Stash then
download dummy block $\pi(N+$ cnt $)$;
set cnt $=\mathrm{cnt}+1$;
else
download encrypted real block in position $\pi(i)$; decrypt and obtain real block B_{i};
set next available Stash block $S_{n \times t}=B_{i}$;
set $n x t=n x t+1$;
(3) re-encrypt and upload all blocks in the Stash;

Reading Block B_{1}

Download and decrypt all blocks from Stash

Reading Block B_{1}

Download and decrypt all blocks from Stash

B_{1} is not found in the stash

Reading Block B_{1}

Download block in position $\pi(1)$

Reading Block B_{1}

Download block in position $\pi(1)$

Decrypt and obtain B_{1}

Reading Block B_{1}

Copy B_{1} in the Stash at position nxt

\mathcal{M}
\mathcal{O}

$$
\mathrm{cnt}=1 \quad \mathrm{nxt}=2 \quad \pi
$$

Reading Block B_{1}

Copy B_{1} in the Stash at position nxt

Reading Block B_{2}

Download and decrypt all blocks from Stash

Reading Block B_{2}

Download and decrypt all blocks from Stash

B_{2} is not found in the Stash

Reading Block B_{2}

Download block in position $\pi(2)$

Reading Block B_{2}

Download block in position $\pi(2)$

Decrypt and obtain B_{2}

Reading Block B_{2}

Copy B_{2} in the Stash at position $n \times t$

\mathcal{M}
\mathcal{O}

$$
\mathrm{cnt}=1 \quad \mathrm{nxt}=3
$$

$$
\pi
$$

Reading Block B_{2}

Copy B_{2} in the Stash at position nxt

M
\mathcal{O}

\square
$n \times t=3$
π

Encrypt and Upload the Stash

Reading Block B_{2}

Copy B_{2} in the Stash at position nxt

Status after reading B_{1} and B_{2}

M
\mathcal{O}

$$
\mathrm{cnt}=1 \quad \mathrm{n} \times \mathrm{t}=2
$$

Status after reading B_{1} and B_{2}

Now read B_{1} again

\mathcal{M}
\mathcal{O}

$$
\mathrm{cnt}=1 \quad \mathrm{n} x \mathrm{t}=2
$$

Status after reading B_{1} and B_{2}

Download and decrypt all blocks from Stash

Status after reading B_{1} and B_{2}

Download and decrypt all blocks from Stash

B_{1} is found in the Stash

Reading Block B_{1} (again)

Download block in position $\pi(N+\mathrm{cnt})$

$$
\pi(N+1)
$$

M
\mathcal{O}
$B_{1} B_{2} \cdots 0$

$$
\mathrm{cnt}=1 \quad \mathrm{nxt}=2
$$

Reading Block B_{1} (again)

Download block in position $\pi(N+$ cnt $)$

No need to decrypt

Reading Block B_{1} (again)

Download block in position $\pi(N+$ cnt $)$

Why is this oblivious?

Independently from the operation, we have the following

- Download stash
- Download a random location that has not been downloaded yet
- Upload re-encrypted stash

Two issues to be dealt with

- What happens when the Stash is full?

Two issues to be dealt with

- What happens when the Stash is full?
- How much memory does \mathcal{O} need?
needs to store cnt and nxt: $\Theta(1)$ memory; π needs $O(N)$ memory.

Overflowing the Stash

M \mathcal{O}

$$
\mathrm{cnt}
$$

$n \times t$

Overflowing the Stash

M
\mathcal{O}

Randomly select a new permutation σ

Overflowing the Stash

M \mathcal{O}

$$
\mathrm{cnt}
$$

$n \times t$

σ

Overflowing the Stash

Overflowing the Stash

$$
\begin{array}{|l|l|lllll|l|l|l|l|l|l|}
\hline B_{17} & 0 & B_{9} & \cdots & 0 & \cdots & B_{4} & B_{5} & \cdots & 0 \\
\hline 14 & & & B_{1} & B_{2} & \cdots & 0 \\
\hline
\end{array}
$$

M \mathcal{O}

Tag it with $\sigma(17)$ encrypt and upload
\square nxt σ

Overflowing the Stash

Overflowing the Stash

M \mathcal{O}

Tag it with ∞ encrypt and upload

$$
\mathrm{cnt}
$$

$$
\mathrm{nxt}
$$

```
\(\sigma\)
```


Overflowing the Stash

| B_{17} | 0 | B_{9} | \cdots | 0 | \cdots | B_{4} | B_{5} | \cdots | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | ∞ | 11 | | ∞ | | B_{1} B_{2} \cdots 0
 2 1 ∞
 8 3 ∞ | | | |

M \mathcal{O}

Obliviously sort according to tags

Overflowing the Stash

$$
\begin{array}{l|l|l|l|l|l|l|l|}
B_{5} & B_{4} & B_{2} & \cdots & \cdots & B_{9} & \cdots \\
\hline
\end{array}
$$

\mathcal{M}
\mathcal{O}

$$
\mathrm{cnt}=1 \quad \mathrm{nxt}=1 \quad \sigma
$$

Amortized cost per read operation

Let us count:

Amortized cost per read operation

Let us count:

- each read costs

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
- $\Theta(M+N)=\Theta(N)$ blocks of bandwidth for tagging;

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
- $\Theta(M+N)=\Theta(N)$ blocks of bandwidth for tagging;
- $\Theta((M+N) \log (M+N))=\Theta(N \log N)$ blocks of bandwidth for sorting;

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
- $\Theta(M+N)=\Theta(N)$ blocks of bandwidth for tagging;
- $\Theta((M+N) \log (M+N))=\Theta(N \log N)$ blocks of bandwidth for sorting;

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
- $\Theta(M+N)=\Theta(N)$ blocks of bandwidth for tagging;
- $\Theta((M+N) \log (M+N))=\Theta(N \log N)$ blocks of bandwidth for sorting;
for an amortized cost of

$$
\Theta\left(M+\frac{N \log N}{M}\right)
$$

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
- $\Theta(M+N)=\Theta(N)$ blocks of bandwidth for tagging;
- $\Theta((M+N) \log (M+N))=\Theta(N \log N)$ blocks of bandwidth for sorting;
for an amortized cost of

$$
\Theta\left(M+\frac{N \log N}{M}\right)
$$

for $M=\sqrt{N}$ we have

$$
\sqrt{N} \cdot \log N
$$

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
- $\Theta(M+N)=\Theta(N)$ blocks of bandwidth for tagging;
- $\Theta((M+N) \log (M+N))=\Theta(N \log N)$ blocks of bandwidth for sorting;
for an amortized cost of

$$
\Theta\left(M+\frac{N \log N}{M}\right)
$$

for $M=\sqrt{N}$ we have

$$
\sqrt{N} \cdot \log N
$$

Using AKS to sort.

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
- $\Theta(M+N)=\Theta(N)$ blocks of bandwidth for tagging;
- $\Theta((M+N) \log (M+N))=\Theta(N \log N)$ blocks of bandwidth for sorting; for an amortized cost of

$$
\Theta\left(M+\frac{N \log N}{M}\right)
$$

for $M=\sqrt{N}$ we have

$$
\sqrt{N} \cdot \log N
$$

Using AKS to sort.

Amortized cost per read operation

Let us count:

- each read costs
- $\Theta(M)$ blocks of bandwidth for the stash;
- $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
- $\Theta(M+N)=\Theta(N)$ blocks of bandwidth for tagging;
- $\Theta((M+N) \log (M+N))=\Theta(N \log N)$ blocks of bandwidth for sorting; for an amortized cost of

$$
\Theta\left(M+\frac{N \log N}{M}\right)
$$

for $M=\sqrt{N}$ we have

$$
\sqrt{N} \cdot \log N
$$

Using AKS to sort.
In practice $\sqrt{N} \cdot \log ^{2} N$.

In practice...

One possible setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

In practice...

One possible setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

In practice...

One possible setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks.

In practice...

One possible setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks.
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

using Batcher's sort

In practice...

One possible setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks.
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

using Batcher's sort

- Online cost

$$
2 \cdot 10^{3} \approx 2000
$$

In practice...

One possible setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks.
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

using Batcher's sort

- Online cost

$$
2 \cdot 10^{3} \approx 2000
$$

- \mathcal{O} 's storage

In practice...

One possible setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks.
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

using Batcher's sort

- Online cost

$$
2 \cdot 10^{3} \approx 2000
$$

- \mathcal{O} 's storage
- cnt and nxt use constant storage

In practice...

One possible setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks.
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

using Batcher's sort

- Online cost

$$
2 \cdot 10^{3} \approx 2000
$$

- \mathcal{O} 's storage
- cnt and nxt use constant storage
- π requires storing $10^{6} 4$ bytes integers $=4$ Megabytes

Keep the stash in \mathcal{O} 's memory

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Keep the stash in \mathcal{O} 's memory

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

Keep the stash in \mathcal{O} 's memory

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks

Keep the stash in \mathcal{O} 's memory

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

Keep the stash in \mathcal{O} 's memory

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

- Online cost: 2 blocks per read

Keep the stash in \mathcal{O} 's memory

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

- Online cost: 2 blocks per read
- \mathcal{O} 's storage

Keep the stash in \mathcal{O} 's memory

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

- Online cost: 2 blocks per read
- \mathcal{O} 's storage
- cnt and nxt use constant storage

Keep the stash in \mathcal{O} 's memory

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

- Online cost: 2 blocks per read
- \mathcal{O} 's storage
- cnt and nxt use constant storage
- π requires storing 10^{6} 4-byte integers=4 Megabytes

Keep the stash in \mathcal{O} 's memory

```
- Jump ahead
```


Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N+M=10^{6}+10^{3}$ blocks
- Cost of shuffling amortized per read operation:

$$
1 / 2 \cdot 6^{2} \cdot 10^{3} \approx 18000
$$

- Online cost: 2 blocks per read
- \mathcal{O} 's storage
- cnt and nxt use constant storage
- π requires storing $10^{6} 4$-byte integers $=4$ Megabytes
- 1000 blocks of stash for a total of 4 Megabytes

Download and Keep Stash

- Use a cache (the Stash) to hide the repetition pattern

Download and Keep Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?

Download and Keep Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?
- Use an ORAM!

Download and Keep Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?
- Use an ORAM!
- We only have two possible ORAMs:

Download and Keep Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?
- Use an ORAM!
- We only have two possible ORAMs:
- Download Stash uses the Download It ORAM to manage the Stash

Download and Keep Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?
- Use an ORAM!
- We only have two possible ORAMs:
- Download Stash uses the Download It ORAM to manage the Stash
- Keep Stash uses the Keep It ORAM to manage the Stash

Download and Keep Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?
- Use an ORAM!
- We only have two possible ORAMs:
- Download Stash uses the Download It ORAM to manage the Stash
- Keep Stash uses the Keep It ORAM to manage the Stash

Download and Keep Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does \mathcal{O} hide access to the Stash?
- Use an ORAM!
- We only have two possible ORAMs:
- Download Stash uses the Download It ORAM to manage the Stash
- Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

M
 \mathcal{O}

N blocks of data
$B_{1} B_{2} \quad B_{3} \ldots B_{N}$

M

\mathcal{O}

ρN blocks of stash

| 0 | 0 | 0 | \cdots |
| :--- | :--- | :--- | :--- | :--- |

M

\mathcal{O}
$\rho^{2} N$ blocks of stash

0	0	\cdots	0

M
 \mathcal{O}
 $\rho^{3} N$ blocks of stash

M
 \mathcal{O}
 $\rho^{3} N$ blocks of stash

\mathcal{M}
\mathcal{O}
\sqrt{N} blocks of stash $\quad \rho=N^{-1 / 6}$
$0 \cdots 0$

\mathcal{M}
\mathcal{O}
\sqrt{N} blocks of stash
$0 \cdots 0$

M
\mathcal{O}
\sqrt{N} blocks of stash

$$
0 \quad \cdots \quad 0 \quad \text { Level } 0
$$

Position Map

$\left(\right.$ lev $\left._{\mathrm{i}}, \mathrm{pos}_{\mathrm{i}}\right) i=1, \ldots, N$

3-level ORAM: Querying

Querying B_{q}

- retrieve $\left(\operatorname{lev}_{q}, \operatorname{pos}_{q}\right)$ from local memory;

3-level ORAM: Querying

Querying B_{q}

- retrieve $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ from local memory;
- if $\operatorname{lev}_{\mathrm{q}} \neq 0$

3-level ORAM: Querying

Querying B_{q}

- retrieve $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ from local memory;
- if $\operatorname{lev}_{\mathrm{q}} \neq 0$
- for all $I \neq \operatorname{lev}_{\mathrm{q}}, \mathcal{O}$ asks for the next dummy in level $I ;$

3-level ORAM: Querying

Querying B_{q}

- retrieve $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ from local memory;
- if $\operatorname{lev}_{\mathrm{q}} \neq 0$
- for all $I \neq \operatorname{lev}_{\mathrm{q}}, \mathcal{O}$ asks for the next dummy in level $I ;$
- asks for block in pos $_{q}$ from level lev ${ }_{q}$;

3-level ORAM: Querying

Querying B_{q}

- retrieve $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ from local memory;
- if $\operatorname{lev}_{\mathrm{q}} \neq 0$
- for all $I \neq \operatorname{lev}_{\mathrm{q}}, \mathcal{O}$ asks for the next dummy in level $I ;$
- asks for block in pos $_{q}$ from level lev ${ }_{q}$;
- B_{q} is then stored in level 0 and $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ is updated;

3-level ORAM: Querying

Querying B_{q}

- retrieve $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ from local memory;
- if $\operatorname{lev}_{\mathrm{q}} \neq 0$
- for all $I \neq \operatorname{lev}_{\mathrm{q}}, \mathcal{O}$ asks for the next dummy in level $I ;$
- asks for block in pos $_{q}$ from level lev ${ }_{q}$;
- B_{q} is then stored in level 0 and $\left({ }^{l e v}{ }_{q}\right.$, pos $\left._{q}\right)$ is updated;
- else

3-level ORAM: Querying

Querying B_{q}

- retrieve $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ from local memory;
- if $\operatorname{lev}_{\mathrm{q}} \neq 0$
- for all $I \neq \operatorname{lev}_{\mathrm{q}}, \mathcal{O}$ asks for the next dummy in level $I ;$
- asks for block in pos $_{q}$ from level lev ${ }_{q}$;
- B_{q} is then stored in level 0 and $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ is updated;
- else
- for $I=1,2,3, \mathcal{O}$ asks for the next dummy in level I;

3-level ORAM: Querying

Querying B_{q}

- retrieve $\left(\operatorname{lev}_{q}, \operatorname{pos}_{q}\right)$ from local memory;
- if $\operatorname{lev}_{\mathrm{q}} \neq 0$
- for all $I \neq \operatorname{lev}_{\mathrm{q}}, \mathcal{O}$ asks for the next dummy in level $I ;$
- asks for block in pos $_{q}$ from level lev ${ }_{q}$;
- B_{q} is then stored in level 0 and $\left(\operatorname{lev}_{q}\right.$, pos $\left._{q}\right)$ is updated;
- else
- for $I=1,2,3, \mathcal{O}$ asks for the next dummy in level I;
- block B_{q} is retrieved from local stash (level 0);

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times
- total cost: $4 \cdot N^{7 / 6}$

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 2 is full after $N^{5 / 6}$ queries

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 2 is full after $N^{5 / 6}$ queries
- it is shuffled with the level 3 of size N;

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 2 is full after $N^{5 / 6}$ queries
- it is shuffled with the level 3 of size N;
- each shuffle costs 4 N

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 2 is full after $N^{5 / 6}$ queries
- it is shuffled with the level 3 of size N;
- each shuffle costs 4 N
- over N queries, it happens $N^{1 / 6}$ times

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 2 is full after $N^{5 / 6}$ queries
- it is shuffled with the level 3 of size N;
- each shuffle costs 4 N
- over N queries, it happens $N^{1 / 6}$ times
- total cost: $4 \cdot N^{7 / 6}$

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 2 is full after $N^{5 / 6}$ queries
- it is shuffled with the level 3 of size N;
- each shuffle costs 4 N
- over N queries, it happens $N^{1 / 6}$ times
- total cost: $4 \cdot N^{7 / 6}$
- Over N queries, the cost is $12 \cdot N^{7 / 6}$

3-level ORAM: Analysis

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1 / 2}$ queries
- it is shuffled with the level 1 of size $N^{2 / 3}$;
- each shuffle costs $4 N^{2 / 3}$
- over N queries, it happens $N^{1 / 2}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 1 is full after $N^{2 / 3}$ queries
- it is shuffled with the level 2 of size $N^{5 / 6}$;
- each shuffle costs $4 N^{5 / 6}$
- over N queries, it happens $N^{1 / 3}$ times
- total cost: $4 \cdot N^{7 / 6}$
- level 2 is full after $N^{5 / 6}$ queries
- it is shuffled with the level 3 of size N;
- each shuffle costs 4 N
- over N queries, it happens $N^{1 / 6}$ times
- total cost: $4 \cdot N^{7 / 6}$
- Over N queries, the cost is $12 \cdot N^{7 / 6}$
- each query has an amortized cost of $12 N^{1 / 6}$ blocks;

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

Resources needed:

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^{6}+2 \cdot 10^{5}+2 \cdot 10^{4}+10^{3}=1,221,000$ blocks

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^{6}+2 \cdot 10^{5}+2 \cdot 10^{4}+10^{3}=1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$
4 \cdot 10^{3} \approx 120
$$

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^{6}+2 \cdot 10^{5}+2 \cdot 10^{4}+10^{3}=1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$
4 \cdot 10^{3} \approx 120
$$

- Online cost: 3 blocks downloaded

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^{6}+2 \cdot 10^{5}+2 \cdot 10^{4}+10^{3}=1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$
4 \cdot 10^{3} \approx 120
$$

- Online cost: 3 blocks downloaded
- \mathcal{O} 's storage

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^{6}+2 \cdot 10^{5}+2 \cdot 10^{4}+10^{3}=1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$
4 \cdot 10^{3} \approx 120
$$

- Online cost: 3 blocks downloaded
- \mathcal{O} 's storage
- cnt and nxt use constant storage

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^{6}+2 \cdot 10^{5}+2 \cdot 10^{4}+10^{3}=1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$
4 \cdot 10^{3} \approx 120
$$

- Online cost: 3 blocks downloaded
- \mathcal{O} 's storage
- cnt and nxt use constant storage
- position map requires storing $10^{6} 6$-byte integers ≈ 4 Megabytes

3-level ORAM: in practice

Same setting:

- $N=10^{6}$ blocks of 4 K each for a total of 4 Gigabytes
- $M=10^{3}$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^{6}+2 \cdot 10^{5}+2 \cdot 10^{4}+10^{3}=1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$
4 \cdot 10^{3} \approx 120
$$

- Online cost: 3 blocks downloaded
- \mathcal{O} 's storage
- cnt and nxt use constant storage
- position map requires storing $10^{6} 6$-byte integers ≈ 4 Megabytes
- 1000 blocks of stash for a total of 4 Megabytes

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$
- $1 / 2 \log _{2} N$ levels with

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$
- $1 / 2 \log _{2} N$ levels with
- $N+N / 2$ blocks

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$
- $1 / 2 \log _{2} N$ levels with
- $N+N / 2$ blocks
- $N / 2+N / 4$ blocks

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$
- $1 / 2 \log _{2} N$ levels with
- $N+N / 2$ blocks
- $N / 2+N / 4$ blocks

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$
- $1 / 2 \log _{2} N$ levels with
- $N+N / 2$ blocks
- $N / 2+N / 4$ blocks
- $3 \sqrt{N}$ blocks

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$
- $1 / 2 \log _{2} N$ levels with
- $N+N / 2$ blocks
- $N / 2+N / 4$ blocks
- $3 \sqrt{N}$ blocks
- Amortized bandwidth $0.55 \cdot \log _{2} N$

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$
- $1 / 2 \log _{2} N$ levels with
- $N+N / 2$ blocks
- $N / 2+N / 4$ blocks
- $3 \sqrt{N}$ blocks
- Amortized bandwidth $0.55 \cdot \log _{2} N$
- For $N=10^{6}, 21$ Blocks

Why stop at 3 levels?

\mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho=1 / 2$
- $1 / 2 \log _{2} N$ levels with
- $N+N / 2$ blocks
- N/2 $+N / 4$ blocks
- $3 \sqrt{N}$ blocks
- Amortized bandwidth $0.55 \cdot \log _{2} N$
- For $N=10^{6}, 21$ Blocks
- OnLine bandwidth: 1 Block

Asymptotics

Hierarchical Approach with constant client memory

- $O\left(\log ^{3} N\right)$ - Goldreich-Ostrovsky 1987-1990
- $O\left(\left(\log ^{2} N\right) / \log \log N\right)$ - Kushilevitz-Lu-Ostrovsky 2012
- $O(\log N \cdot \log \log N)$ - Patel-P-Raykova-Yeo 2018
- $O(\log N)$ - Asharov-Komargodski-Lin-Nayak-Peserico-Shi 2020

Asymptotics

Hierarchical Approach with constant client memory

- $O\left(\log ^{3} N\right)$ - Goldreich-Ostrovsky 1987-1990
- $O\left(\left(\log ^{2} N\right) / \log \log N\right)$ - Kushilevitz-Lu-Ostrovsky 2012
- $O(\log N \cdot \log \log N)$ - Patel-P-Raykova-Yeo 2018
- $O(\log N)$ - Asharov-Komargodski-Lin-Nayak-Peserico-Shi 2020
$\Omega(\log (N / C))$ - Larsen-Nielsen 2018

Differential Privacy

(ϵ, δ)-Differential Privacy

- \mathcal{M} stores n blocks of memory.
- Every time \mathcal{O} wants a block, he asks \mathcal{M} one or more blocks.
- Security notion:

For any two block sequences $\mathbb{B}=B_{1}, \ldots, B_{n}$ and $\mathbb{C}=C_{1}, \ldots, C_{n}$ For any two access sequences i_{1}, \ldots, i_{l} and j_{1}, \ldots, j_{l} that differ in one position

* performing access $i_{1}, \ldots, i_{\text {}}$, on $\mathbb{B}=B_{1}, \ldots, B_{n}$;
* performing access j_{1}, \ldots, j_{l} on $\mathbb{C}=C_{1}, \ldots, C_{n}$
generate the same distribution of accesses to the data stored by \mathcal{M}

Differential Privacy

(ϵ, δ)-Differential Privacy

- \mathcal{M} stores n blocks of memory.
- Every time \mathcal{O} wants a block, he asks \mathcal{M} one or more blocks.
- Security notion:

For any two block sequences $\mathbb{B}=B_{1}, \ldots, B_{n}$ and $\mathbb{C}=C_{1}, \ldots, C_{n}$
For any two access sequences i_{1}, \ldots, i_{l} and j_{1}, \ldots, j_{l} that differ in one position

$$
\begin{aligned}
& \text { performing access } i_{1}, \ldots, i_{\text {}} \text { on } \mathbb{B}=B_{1}, \ldots, B_{n} \text {; } \\
& \text { performing access } j_{1}, \ldots, j_{l} \text { on } \mathbb{C}=C_{1}, \ldots, C_{n}
\end{aligned}
$$

generate the same distribution of accesses to the data stored by \mathcal{M}
For every predicate A

$$
\begin{aligned}
& \operatorname{Prob}[\text { view } \leftarrow \operatorname{View}(I, \mathbb{B}): A(\text { view })=1] \\
& \quad \leq e^{\epsilon} \cdot \operatorname{Prob}[\text { view } \leftarrow \operatorname{View}(J, \mathbb{C}): A(\text { view })=1]+\delta
\end{aligned}
$$

Differential Privacy

(ϵ, δ)-Differential Privacy

- \mathcal{M} stores n blocks of memory.
- Every time \mathcal{O} wants a block, he asks \mathcal{M} one or more blocks.
- Security notion:

For any two block sequences $\mathbb{B}=B_{1}, \ldots, B_{n}$ and $\mathbb{C}=C_{1}, \ldots, C_{n}$
For any two access sequences i_{1}, \ldots, i_{l} and j_{1}, \ldots, j_{l} that differ in one position

$$
\begin{aligned}
& \text { performing access } i_{1}, \ldots, i_{\text {}} \text { on } \mathbb{B}=B_{1}, \ldots, B_{n} \text {; } \\
& \text { performing access } j_{1}, \ldots, j_{l} \text { on } \mathbb{C}=C_{1}, \ldots, C_{n}
\end{aligned}
$$

generate the same distribution of accesses to the data stored by \mathcal{M}
For every predicate A

$$
\begin{aligned}
& \operatorname{Prob}[\text { view } \leftarrow \operatorname{View}(I, \mathbb{B}): A(\text { view })=1] \\
& \quad \leq e^{\epsilon} \cdot \operatorname{Prob}[\text { view } \leftarrow \operatorname{View}(J, \mathbb{C}): A(\text { view })=1]+\delta
\end{aligned}
$$

$\Omega(\log (N / C))$ - P-Yeo 2019

The snapshot adversary

the Server is the adversary
Snapshot Adversary
Du, Genkin, Grubbs, 2022

- The adversary gets control of the Server for L consecutive operations Slowdown $O(\log L)$

The snapshot adversary

the Server is the adversary
Snapshot Adversary
Du, Genkin, Grubbs, 2022

- The adversary gets control of the Server for L consecutive operations Slowdown $O(\log L)$

What if the adversary is active for more than one window?

The snapshot adversary

Snapshot window (t, ℓ)

- A snapshot window of length ℓ starting at time t.
- The adversary receives
snapshot of server memory content before operation t has been executed
transcript of server's operations for the following ℓ operations that take place at times $t, t+1, \ldots, t+\ell-1$.
- For $\ell=0$, only memory content before operation t.

A (S, L)-snapshot adversary
Specifies a sequence of snaspshot windows $\mathcal{S}=\left(\left(t_{1}, \ell_{1}\right), \ldots,\left(t_{s}, \ell_{s}\right)\right)$ such that

- $s \leq S$, at most S windows,
at most S snapshots
- $\sum \ell_{i} \leq L$, for a total duration of at most L operations at most L transcripts

The Lower Bound

Theorem (P-Yeo 23)

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private RAM data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

The Lower Bound

Theorem (P-Yeo 23)

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private $R A M$ data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

n logical blocks of b bits

The Lower Bound

Theorem (P-Yeo 23)

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private $R A M$ data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

$w<b$ is size physical words

The Lower Bound

Theorem (P-Yeo 23)

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private $R A M$ data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

Client has c bits of local memory

The Lower Bound

Theorem (P-Yeo 23)

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private RAM data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

Adversary receives at most 3 memory snapshots and 1 operation transcript

The Lower Bound

Theorem (P-Yeo 23)

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private $R A M$ data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

ϵ is the adversary's advantage in the security game

The security game

$\operatorname{Expt}_{\mathrm{DS}, \mathcal{A}}^{n, \beta}$

- Receive $\left(O_{0}, O_{1},\left(\left(t_{1}, \ell_{1}\right), \ldots,\left(t_{s}, \ell_{s}\right)\right)\right)$ from $\mathcal{A}_{0}\left(1^{n}\right)$.
- Set $\mathcal{L} \leftarrow \emptyset, \mathrm{DS} \leftarrow\left(R_{1}, \ldots, R_{n}\right), i \leftarrow 1$.
- While $i \leq\left|O_{\beta}\right|$:
- If $i=t_{j}$ for some $1 \leq j \leq s$:
\star Set $\mathcal{L} \leftarrow \mathcal{L} \|$ (memory, M).
\star For $k=1, \ldots, \ell_{j}$:
Execute $\operatorname{DS}^{\text {LRead, LWrite }}\left(O_{b}[i]\right)$ and set $i \leftarrow i+1$.
- Else:

```
Execute DS Read,Write}(\mp@subsup{O}{b}{}[i])\mathrm{ and set }i\leftarrowi+1
```

- Return $\mathcal{A}_{1}(\mathcal{L})$.

$$
\left|\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{DS}, \mathcal{A}}^{n, 0}=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{DS}, \mathcal{A}}^{n, 1}=1\right]\right| \leq \epsilon,
$$

for all PPT \mathcal{A} that are (S, L)-snapshot adversaries.

The Epoch structure

The sequence and the epochs

- n logical indices
- $m \leftarrow\{n / 2+1, \ldots, n\}$
- m writes of random b-bit blocks at indices $1,2, \ldots, m$
- followed by one read.

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_{0} read of O_{0} does not depend on epoch i

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_{0} read of O_{0} does not depend on epoch i
- security
but if it does not, then security fails

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_{0} read of O_{0} does not depend on epoch i
- security
but if it does not, then security fails
- final step
this holds for all epochs except for those that have fewer than c / b writes.

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_{0} read of O_{0} does not depend on epoch i
- security
but if it does not, then security fails
- final step
this holds for all epochs except for those that have fewer than c / b writes.
- we have a lower bound $\Omega(b / w \cdot \log (n b / c))$

A (3, 1)-snapshot adversary - Part 0

$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.
- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, read $\left.(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$, write $\left(m, B_{m}\right)$, $\left.\operatorname{read}(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.

A (3, 1)-snapshot adversary - Part 0

$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.
- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, read $\left.(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$, write $\left.\left(m, B_{m}\right), \operatorname{read}(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.
- $\left(p_{i}, 0\right)$: snapshot of server memory before epoch i

A (3, 1)-snapshot adversary - Part 0

$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.
- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, read $\left.(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$ write $\left(m, B_{m}\right)$, read $\left.(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.
- $\left(p_{i}, 0\right)$: snapshot of server memory before epoch i
- ($p_{i}+r^{i}, 0$): snapshot of server memory after epoch i

A $(3,1)$-snapshot adversary - Part 0
$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.
- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, $\left.\operatorname{read}(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$, write $\left(m, B_{m}\right)$, $\left.\operatorname{read}(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.
- $\left(p_{i}, 0\right)$: snapshot of server memory before epoch i
- ($p_{i}+r^{i}, 0$): snapshot of server memory after epoch i
- $(m+1,1)$: snapshot before read and transcript of read operation

A $(3,1)$-snapshot adversary - Part 0
$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.

Important

- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, $\left.\operatorname{read}(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$, write $\left.\left(m, B_{m}\right), \operatorname{read}(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.
- $\left(p_{i}, 0\right)$: snapshot of server memory before epoch i
- ($p_{i}+r^{i}, 0$): snapshot of server memory after epoch i
- $(m+1,1)$: snapshot before read and transcript of read operation

A (3, 1)-snapshot adversary - Part 1

- U_{i} memory locations overwritten during epoch i
- by comparing the initial and final snapshot of epoch i
- V_{i} memory locations overwritten since epoch i
- by comparing the final snapshot of epoch i with snapshot before the read
- W_{i} memory location overwritten during epoch i that have not been modified when the read starts
- $W_{i}=U_{i} \backslash V_{i}$
- Q_{j} cells from W_{i} read during $\operatorname{read}(j)$,
- $\left|Q_{j}\right| \approx b / w$
- \mathcal{A}^{1} returns 0 iff $\left|Q_{j}\right| \leq \rho \cdot b / w$

The coding argument

Suppose

$$
t_{w}=o(b / w \log (n b / c))
$$

then there exists $\rho>0$ such that, for most epochs i,

$$
\left|Q_{j}\right| \geq \rho \cdot b / w
$$

with probability $\geq 1 / 8$ for j in epoch i.

The coding argument

Suppose

$$
t_{w}=o(b / w \log (n b / c))
$$

then there exists $\rho>0$ such that, for most epochs i,

$$
\left|Q_{j}\right| \geq \rho \cdot b / w
$$

with probability $\geq 1 / 8$ for j in epoch i.

Suppose not.

The coding argument

Suppose

$$
t_{w}=o(b / w \log (n b / c))
$$

then there exists $\rho>0$ such that, for most epochs i,

$$
\left|Q_{j}\right| \geq \rho \cdot b / w
$$

with probability $\geq 1 / 8$ for j in epoch i.

Suppose not.

Then we can encode the $r^{i} \cdot b$ bits of epoch i using fewer bits.

The coding argument - I

A coding game

- S wants to send B^{i} to R
the r^{i} blocks from epoch i
- S and R share
B^{-i} (all except epoch i)

$$
\mathcal{H}\left(\mathrm{B}^{i} \mid \mathcal{R}, \mathrm{B}^{-i}\right)=r^{i} \cdot b .
$$

The coding argument - II

- S and R execute all epochs $>i$

$$
\operatorname{write}\left(1, \mathrm{~B}_{1}\right), \ldots, \operatorname{write}\left(p_{i}-1, \mathrm{~B}_{p_{i}-1}\right)
$$

The coding argument

- S executes epoch i

$$
\operatorname{write}\left(p_{i}, \mathrm{~B}_{p_{i}}\right), \ldots, \operatorname{write}\left(p_{i}+r^{i}-1, \mathrm{~B}_{p_{i}+r^{i}-1}\right)
$$

- Note: R cannot execute epoch i

The coding argument

- S and R execute epochs $<i$
- R needs some help
\star client memory: c bits.
- For $j=p_{i-1}, \ldots, m$
- execute write $\left(j, \mathrm{~B}_{j}\right)$ touching T_{j}
- R needs $U_{i} \cap T_{j}$ (cell location and content)

$$
\text { write }\left(y_{1} B_{3}\right)
$$

T_{5}

The coding argument
c bits + set $Y_{i}:=U_{i} \cap\left(T_{p_{i}+r_{i}} \cup \cdots \cup T_{m}\right)$

罍 U_{i}
modified during Epoch i

The coding argument

\mathbb{S} memory state after write $\left(m, \mathrm{~B}_{m}\right)$

- For $j=p_{i}, \ldots, p_{i}+r^{i}-1$
- S and R execute read (j) starting from \mathbb{S}
- R needs $Q_{j}:=W_{i} \cap T_{j}^{m}$
- if read errs or $Q_{j}>\rho b / w$
$\star B_{j}$ is added to encoding
- else
$\star Q_{j}$ is added to encoding

Length of encoding

Length depends on

- Set Y_{i}
- for most epochs $i, \mathbb{E}\left[\left|Y_{i}\right|\right] \leq r^{i-1} b / w$
- Set Q_{j}
- By assumption $\left|Q_{j}\right|<\rho \cdot b / w$ with prob $\geq 7 / 8$

Length of encoding

Length depends on

- Set Y_{i}
- for most epochs $i, \mathbb{E}\left[\left|Y_{i}\right|\right] \leq r^{i-1} b / w$
- Set Q_{j}
- By assumption $\left|Q_{j}\right|<\rho \cdot b / w$ with prob $\geq 7 / 8$

Encoding is too small

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,

$$
\left|Q_{j}\right| \geq \rho \cdot b / w
$$

with probability $\geq 1 / 8$ for j in epoch i. from epoch i.

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,
\mathcal{A} outputs 1 with probability $\geq 1 / 8$ when reading j from epoch i.

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,
\mathcal{A} outputs 1 with probability $\geq 1 / 8$ when reading j from epoch i.
If $\epsilon=1 / 16$ then \mathcal{A} outputs 1 with probability $\geq 1 / 16$ when reading m

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,
\mathcal{A} outputs 1 with probability $\geq 1 / 8$ when reading j from epoch i.
If $\epsilon=1 / 16$ then \mathcal{A} outputs 1 with probability $\geq 1 / 16$ when reading m
$\operatorname{read}(m)$ must touch $\geq \rho \cdot b / w$ cells from epoch i

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,
\mathcal{A} outputs 1 with probability $\geq 1 / 8$ when reading j from epoch i.
If $\epsilon=1 / 16$ then \mathcal{A} outputs 1 with probability $\geq 1 / 16$ when reading m
$\operatorname{read}(m)$ must touch $\geq \rho \cdot b / w$ cells from epoch i

$$
\Omega(b / w \cdot \log n b / c)
$$

Wrapping up

Now...
If writes are fast

$$
t_{w}=o(b / w \log (n b / c))
$$

then $\operatorname{read}(j)$ in epoch i has $Q_{j}=\Omega(b / w)$ with prob at least $1 / 8$.

Wrapping up

Now...
If writes are fast

$$
t_{w}=o(b / w \log (n b / c))
$$

then $\operatorname{read}(j)$ in epoch i has $Q_{j}=\Omega(b / w)$ with prob at least $1 / 8$.

Reading 1

Must touch from each large epoch $O(b / w)$ cells otherwise we lose security.

$$
\Omega(b / w \cdot \log (n b / c))
$$

$(\infty, 0)$-snapshot secure stacks
Adversary gets snapshots of memory after all operations.

Snapshot Secure Stacks

- Init()
randomly choose encryption key K
set cnt $=0$ and top $=-1$.
- Push(v)
upload $\operatorname{Enc}(K,(v$, top $))$ to location cnt
set top \leftarrow cnt
set cnt \leftarrow cnt +1
- Pop()
download pair (v, t) from location top
- upload a dummy encryption to location cnt
set top $\leftarrow t$
set cnt \leftarrow cnt +1
return V

$(\infty, 1)$-snapshot secure stacks

Adversary gets snapshots of memory after all operations and one transcript.
$(\infty, 1)$-snapshot secure stacks
Adversary gets snapshots of memory after all operations and one transcript.

Snapshot Secure Stacks

- Init()
randomly choose seed S
randomly choose encryption key K
set cnt $=0$ and top $=-1$.
- Push(v)
download from location $F(S$, top $)$ and discard
- upload $\operatorname{Enc}(K,(v$, top $))$ to location $F(S$, cnt $)$
top \leftarrow cnt
. cnt \leftarrow cnt +1
- Pop()
download pair (v, t) from location $F(S$, top $)$
- upload dummy encryption at location $F(S$, cnt $)$
set top $\leftarrow t$
set cnt \leftarrow cnt +1

Conclusions

- $\Theta(\log (N / C))$ for ORAM
- Oblivious
- DP
- Leakage
- Snapshot Adversary

Take home items

- Access pattern leakage is a privacy threat
- Metadata
- It is possible to hide access pattern
- at the cost of a logarithmic slowdown
- Theoretical questions:
- is there a meaningfull security notion that requires constant slowdown?
- construct oblivious algorithms for specific problems
- Theoretical questions:
- can we get a practical Secure RAM for reasonable parameters?
* server memory of about 100 GigaBytes
* client memory of about 100 Megabyte
* single digit slowdown

