
The Complexity of Secure RAMs

Giuseppe Persiano

Università di Salerno and Google LLC

CIAC in Cyprus – June 15, 2023

Giuseppe Persiano (UNISA+Google) CIAC 2023 1 / 64

Cloud Storage (simplified)

The perfect marriage of two parties

The Data Owner O:
owns large amount of data and not enough local storage

The Storage Manager M:
owns large amount of storage and not enough data

If O and M trust each other no problem. we can go home now.

Lack of trust is much more interesting.

Giuseppe Persiano (UNISA+Google) CIAC 2023 2 / 64

Cloud Storage (simplified)

The perfect marriage of two parties

The Data Owner O:
owns large amount of data and not enough local storage

The Storage Manager M:
owns large amount of storage and not enough data

If O and M trust each other

no problem. we can go home now.

Lack of trust is much more interesting.

Giuseppe Persiano (UNISA+Google) CIAC 2023 2 / 64

Cloud Storage (simplified)

The perfect marriage of two parties

The Data Owner O:
owns large amount of data and not enough local storage

The Storage Manager M:
owns large amount of storage and not enough data

If O and M trust each other no problem. we can go home now.

Lack of trust is much more interesting.

Giuseppe Persiano (UNISA+Google) CIAC 2023 2 / 64

Cloud Storage (simplified)

The perfect marriage of two parties

The Data Owner O:
owns large amount of data and not enough local storage

The Storage Manager M:
owns large amount of storage and not enough data

If O and M trust each other no problem. we can go home now.

Lack of trust is much more interesting.

Giuseppe Persiano (UNISA+Google) CIAC 2023 2 / 64

Enter Encryption

O does not trust M because O’s data contain personal data.

Use Encryption

Private Key: if O is the source of data

Public Key: if data come from various sources

Data is

encrypted before being uploaded to M

decrypted when downloaded from M

Giuseppe Persiano (UNISA+Google) CIAC 2023 3 / 64

Enter Encryption

O should not trust M because O’s data contain personal data.

Use Encryption

Private Key: if O is the source of data

Public Key: if data come from various sources

Data is

encrypted before being uploaded to M

decrypted when downloaded from M

Giuseppe Persiano (UNISA+Google) CIAC 2023 3 / 64

Enter Encryption

O should not trust M because O’s data contain personal data.

Use Encryption

Private Key: if O is the source of data

Public Key: if data come from various sources

Data is

encrypted before being uploaded to M

decrypted when downloaded from M

Giuseppe Persiano (UNISA+Google) CIAC 2023 3 / 64

Enter Encryption

O should not trust M because O’s data contain personal data.

Use Encryption

Private Key: if O is the source of data

Public Key: if data come from various sources

Data is

encrypted before being uploaded to M

decrypted when downloaded from M

Giuseppe Persiano (UNISA+Google) CIAC 2023 3 / 64

Enter Encryption

O should not trust M because O’s data contain personal data.

Use Encryption

Private Key: if O is the source of data

Public Key: if data come from various sources

Data is

encrypted before being uploaded to M

decrypted when downloaded from M

Giuseppe Persiano (UNISA+Google) CIAC 2023 3 / 64

Are we done?

What if O wants to run an algorithm on the encrypted data?

Running an algorithm might reveal information on the data.

Suppose O wants to sort the data.

Giuseppe Persiano (UNISA+Google) CIAC 2023 4 / 64

Are we done?

What if O wants to run an algorithm on the encrypted data?

Running an algorithm might reveal information on the data.

Suppose O wants to sort the data.

Example

4 customers must be sorted according to revenue.

A;200 B;300 C;100 D;150

download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.

Giuseppe Persiano (UNISA+Google) CIAC 2023 4 / 64

Are we done?

What if O wants to run an algorithm on the encrypted data?

Running an algorithm might reveal information on the data.

Suppose O wants to sort the data.

Example

4 customers must be sorted according to revenue.

C;100 B;300 A;200 D;150

download 2 and 4. decrypt, swap if out of order, re-encrypt, upload.

Giuseppe Persiano (UNISA+Google) CIAC 2023 4 / 64

Are we done?

What if O wants to run an algorithm on the encrypted data?

Running an algorithm might reveal information on the data.

Suppose O wants to sort the data.

Example

4 customers must be sorted according to revenue.

C;100 D;150 A;200 B;300

download 1 and 2. decrypt, swap if out of order, re-encrypt, upload.

Giuseppe Persiano (UNISA+Google) CIAC 2023 4 / 64

Are we done?

What if O wants to run an algorithm on the encrypted data?

Running an algorithm might reveal information on the data.

Suppose O wants to sort the data.

Example

4 customers must be sorted according to revenue.

C;100 D;150 A;200 B;300

download 3 and 4. decrypt, swap if out of order, re-encrypt, upload.

Giuseppe Persiano (UNISA+Google) CIAC 2023 4 / 64

Are we done?

What if O wants to run an algorithm on the encrypted data?

Running an algorithm might reveal information on the data.

Suppose O wants to sort the data.

Example

4 customers must be sorted according to revenue.

C;100 D;150 A;200 B;300

download 2 and 3. decrypt, swap if out of order, re-encrypt, upload.

Giuseppe Persiano (UNISA+Google) CIAC 2023 4 / 64

Are we done?

What if O wants to run an algorithm on the encrypted data?

Running an algorithm might reveal information on the data.

Suppose O wants to sort the data.

Example

4 customers must be sorted according to revenue.

C;100 D;150 A;200 B;300

Giuseppe Persiano (UNISA+Google) CIAC 2023 4 / 64

Security

Can M link the first record in the starting configuration to its position in
the last configuration?

A;200 B;300 C;100 D;150

C;100 D;150 A;200 B;300

Giuseppe Persiano (UNISA+Google) CIAC 2023 5 / 64

Two Concepts

Indistinguishability of Swap or Not

Download, Decrypt, Swap or Not, Re-encrypt, Upload

Chosen-Plaintext Security: Standard notion of security for encryption
guarantee that M is unable to infere whether a swap has taken place.

Giuseppe Persiano (UNISA+Google) CIAC 2023 6 / 64

Two Concepts

Indistinguishability of Swap or Not

Download, Decrypt, Swap or Not, Re-encrypt, Upload

Chosen-Plaintext Security: Standard notion of security for encryption
guarantee that M is unable to infere whether a swap has taken place.

Giuseppe Persiano (UNISA+Google) CIAC 2023 6 / 64

Enter Obliviousness

Definition (Weak Obliviousness)

An algorithm is weakly oblivious if the access pattern to data is the same
for all possible inputs of the same length.

Thanks to Wikipedia for the image

Giuseppe Persiano (UNISA+Google) CIAC 2023 7 / 64

The adversarial setting

M
O

1 2 3 4 5 6

Giuseppe Persiano (UNISA+Google) CIAC 2023 8 / 64

The adversarial setting

M
O

1 2 3 4 5 6

Download one or more blocks

Giuseppe Persiano (UNISA+Google) CIAC 2023 8 / 64

The adversarial setting

M
O

1 2 3 4 5 6

Download one or more blocks

M’s View

Down(2)
Down(5)

Giuseppe Persiano (UNISA+Google) CIAC 2023 8 / 64

The adversarial setting

M
O

1 2 3 4 5 6

Decrypt one block

B4

M’s View

Down(2)
Down(5)

Giuseppe Persiano (UNISA+Google) CIAC 2023 8 / 64

The adversarial setting

M
O

1 2 3 4 5 6

B4

Re-encrypt

M’s View

Down(2)
Down(5)

Giuseppe Persiano (UNISA+Google) CIAC 2023 8 / 64

The adversarial setting

M
O

1 2 3 4 5 6

Re-encrypt

M’s View

Down(2)
Down(5)

Giuseppe Persiano (UNISA+Google) CIAC 2023 8 / 64

The adversarial setting

M
O

1 2 3 4 5 6

Upload

M’s View

Down(2)
Down(5)

Giuseppe Persiano (UNISA+Google) CIAC 2023 8 / 64

The adversarial setting

M
O

1 2 3 4 5 6

Upload

M’s View

Down(2)
Down(5)
Up(2)

Giuseppe Persiano (UNISA+Google) CIAC 2023 8 / 64

A new industry

Job Opportunities for Algorithmists

Re-design all algorithms to be oblivious!

Remove all ifs, and whiles

Insertion Sort is not oblivious:
I when the last element of the array is inserted, M sees where it lands

Giuseppe Persiano (UNISA+Google) CIAC 2023 9 / 64

Hiding the Algorithm

A new threat

which algorithm is being run should also be private information

A;200 B;300 C;100 D;150

Giuseppe Persiano (UNISA+Google) CIAC 2023 10 / 64

Hiding the Algorithm

A new threat

which algorithm is being run should also be private information

A;200 B;300 C;100 D;150

Giuseppe Persiano (UNISA+Google) CIAC 2023 10 / 64

Hiding the Algorithm

A new threat

which algorithm is being run should also be private information

A;200 B;300 C;100 D;150

Giuseppe Persiano (UNISA+Google) CIAC 2023 10 / 64

Hiding the Algorithm

A new threat

which algorithm is being run should also be private information

A;200 B;300 C;100 D;150

Giuseppe Persiano (UNISA+Google) CIAC 2023 10 / 64

Hiding the Algorithm

A new threat

which algorithm is being run should also be private information

A;200 B;300 C;100 D;150

Giuseppe Persiano (UNISA+Google) CIAC 2023 10 / 64

Enter Oblivious RAM Differential Privacy

ORAM [Goldreich-Ostrovsky]

M stores n blocks of memory.

Every time O wants a block, he asks M one or more blocks.

Security notion:
I For any two block sequences B = B1, . . . ,Bn and C = C1, . . . ,Cn
I For any two access sequences I = (i1, . . . , il) and J = (j1, . . . , jl)

F performing accesses i1, . . . , il on B = B1, . . . ,Bn;
F performing access j1, . . . , jl on C = C1, . . . ,Cn

generate the same distribution of accesses to the data stored by M

For every predicate A

Prob[view← View(I ,B) : A(view) = 1]

≤ e0 · Prob[view← View(J,C) : A(view) = 1] + negl(n)

Giuseppe Persiano (UNISA+Google) CIAC 2023 11 / 64

Enter Oblivious RAM Differential Privacy

ORAM [Goldreich-Ostrovsky]

M stores n blocks of memory.

Every time O wants a block, he asks M one or more blocks.

Security notion:
I For any two block sequences B = B1, . . . ,Bn and C = C1, . . . ,Cn
I For any two access sequences I = (i1, . . . , il) and J = (j1, . . . , jl)

F performing accesses i1, . . . , il on B = B1, . . . ,Bn;
F performing access j1, . . . , jl on C = C1, . . . ,Cn

generate the same distribution of accesses to the data stored by M

For every predicate A

Prob[view← View(I ,B) : A(view) = 1]

≤ e0 · Prob[view← View(J,C) : A(view) = 1] + negl(n)

Giuseppe Persiano (UNISA+Google) CIAC 2023 11 / 64

ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

O runs the algorithm

when a block of memory is requested, O retrieves it from M using
ORAM.

Is ORAM possible at all?

Giuseppe Persiano (UNISA+Google) CIAC 2023 12 / 64

ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

O runs the algorithm

when a block of memory is requested, O retrieves it from M using
ORAM.

Is ORAM possible at all?

Giuseppe Persiano (UNISA+Google) CIAC 2023 12 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B2

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B3

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B3 B4

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B3 B5

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B3 B6

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B3

Access pattern independent from the block accessed
but...

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

Yes! This is possible!

A Trivial ORAM

All blocks are uploaded to M in encrypted form.

B1 B2 B3 B4 B5 B6

Every time O needs to access block Bi , all the blocks are downloaded
and all except for Bi are discarded.

Accessing block B3

B1 B2 B3 B4 B5 B6

B3

Access pattern independent from the block accessed
but... linear slowdown!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 13 / 64

First try

Can this be made efficient?

First try: Initialization

permute blocks according to permutation π
I an encryption of Bi is uploaded in position π(i);

O keeps π private;

Giuseppe Persiano (UNISA+Google) CIAC 2023 14 / 64

First try

Can this be made efficient?

First try: Initialization

permute blocks according to permutation π
I an encryption of Bi is uploaded in position π(i);

B1 B2 B3 B4 B5 B6

O keeps π private;

Giuseppe Persiano (UNISA+Google) CIAC 2023 14 / 64

First try

Can this be made efficient?

First try: Initialization

permute blocks according to permutation π
I an encryption of Bi is uploaded in position π(i);

B2 B4 B3 B6 B1 B5

O keeps π private;

Giuseppe Persiano (UNISA+Google) CIAC 2023 14 / 64

First try

Can this be made efficient?

First try: Reading block i

ask M for block in position π(i);

decrypt to obtain Bi ;

re-encrypt and upload in position π(i);

Accessing block B3

B2 B4 B3 B6 B1 B5

Giuseppe Persiano (UNISA+Google) CIAC 2023 15 / 64

First try

Can this be made efficient?

First try: Reading block i

ask M for block in position π(i);

decrypt to obtain Bi ;

re-encrypt and upload in position π(i);

Accessing block B3

B2 B4 B3 B6 B1 B5

B3

Giuseppe Persiano (UNISA+Google) CIAC 2023 15 / 64

First try: Security

Access sequence: B1,B2,B3

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M :

Accessing block B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 16 / 64

First try: Security

Access sequence: B1,B2,B3

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5

Accessing block B1

B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 16 / 64

First try: Security

Access sequence: B1,B2,B3

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5

Accessing block B2

Giuseppe Persiano (UNISA+Google) CIAC 2023 16 / 64

First try: Security

Access sequence: B1,B2,B3

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5, 1

Accessing block B2

B2

Giuseppe Persiano (UNISA+Google) CIAC 2023 16 / 64

First try: Security

Access sequence: B1,B2,B3

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5, 1

Accessing block B3

Giuseppe Persiano (UNISA+Google) CIAC 2023 16 / 64

First try: Security

Access sequence: B1,B2,B3

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5, 1, 3

Accessing block B3

B3

Giuseppe Persiano (UNISA+Google) CIAC 2023 16 / 64

First try: Security

Access sequence: B1,B2,B3

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : x , y , z

Giuseppe Persiano (UNISA+Google) CIAC 2023 16 / 64

First try: Security

Access sequence: B1,B2,B1

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M :

Accessing block B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 17 / 64

First try: Security

Access sequence: B1,B2,B1

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5

Accessing block B1

B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 17 / 64

First try: Security

Access sequence: B1,B2,B1

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5

Accessing block B2

Giuseppe Persiano (UNISA+Google) CIAC 2023 17 / 64

First try: Security

Access sequence: B1,B2,B1

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5, 1

Accessing block B2

B2

Giuseppe Persiano (UNISA+Google) CIAC 2023 17 / 64

First try: Security

Access sequence: B1,B2,B1

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5, 1

Accessing block B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 17 / 64

First try: Security

Access sequence: B1,B2,B1

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : 5, 1, 5

Accessing block B1

B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 17 / 64

First try: Security

Access sequence: B1,B2,B1

B2

1

B4

2

B3

3

B6

4

B1

5

B5

6

Access pattern seen by M : x , y , x

Giuseppe Persiano (UNISA+Google) CIAC 2023 17 / 64

Hiding the Repetition Pattern

Initialization for N blocks
1 N real blocks B1, . . . ,BN ;

2 create M dummy blocks BN+1, . . . ,BN+M ;

3 create M stash blocks S1, . . . ,SM initialized to 0;

4 pick a random permutation π over [N + M];
5 permute real and dummy blocks according to permutation π

I an encryption of Bi is uploaded in position π(i);

6 upload all stash blocks in encrypted form;

7 initialize nxt = 1, cnt = 1;

8 π is kept private;

Giuseppe Persiano (UNISA+Google) CIAC 2023 18 / 64

Initial Configuration

B1 B2
.BN B

N+1
B

N+2
.B

N+M

Real Blocks Dummy Blocks Stash

0 0 . . . 0

Giuseppe Persiano (UNISA+Google) CIAC 2023 19 / 64

Initial Configuration

B1 B2
.BN B

N+1
B

N+2
.B

N+M

Real Blocks Dummy Blocks Stash

0 0 . . . 0

. 0 0 . . . 0

π(N) π(2) π(1)

Giuseppe Persiano (UNISA+Google) CIAC 2023 19 / 64

Initial Configuration

B1 B2
.BN B

N+1
B

N+2
.B

N+M

Real Blocks Dummy Blocks Stash

0 0 . . . 0

. 0 0 . . . 0

π(N) π(2) π(1)

N + M Encrypted Blocks M Encrypted Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 19 / 64

Initial Configuration

. 0 0 . . . 0

cnt = 1 nxt = 1 π Local to O

M’s storage

Giuseppe Persiano (UNISA+Google) CIAC 2023 19 / 64

Reading Block Bi

1 download and decrypt all M blocks in the Stash;
2 if Bi is found in the Stash then

I download dummy block π(N + cnt);
I set cnt = cnt + 1;

else
I download encrypted real block in position π(i);
I decrypt and obtain real block Bi ;
I set next available Stash block Snxt = Bi ;
I set nxt = nxt + 1;

3 re-encrypt and upload all blocks in the Stash;

Giuseppe Persiano (UNISA+Google) CIAC 2023 20 / 64

Reading Block B1

Download and decrypt all blocks from Stash

M
O

. 0 0 . . . 0

0 0 . . . 0

cnt = 1 nxt = 1 π

B1 is not found in the stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 21 / 64

Reading Block B1

Download and decrypt all blocks from Stash

M
O

. 0 0 . . . 0

0 0 . . . 0

cnt = 1 nxt = 1 π

B1 is not found in the stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 21 / 64

Reading Block B1

Download block in position π(1)

M
O

. B1 0 0 . . . 0

0 0 . . . 0

π(1)

cnt = 1 nxt = 1 π

B1

Decrypt and obtain B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 22 / 64

Reading Block B1

Download block in position π(1)

M
O

. B1 0 0 . . . 0

0 0 . . . 0

π(1)

cnt = 1 nxt = 1 π

B1

Decrypt and obtain B1

Giuseppe Persiano (UNISA+Google) CIAC 2023 22 / 64

Reading Block B1

Copy B1 in the Stash at position nxt

M
O

. 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

B1

Encrypt and Upload the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 23 / 64

Reading Block B1

Copy B1 in the Stash at position nxt

M
O

. 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

B1

Encrypt and Upload the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 23 / 64

Reading Block B2

Download and decrypt all blocks from Stash

M
O

. 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

B2 is not found in the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 24 / 64

Reading Block B2

Download and decrypt all blocks from Stash

M
O

. 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

B2 is not found in the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 24 / 64

Reading Block B2

Download block in position π(2)

M
O

. . . B2
. 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

π(2)

B2

Decrypt and obtain B2

Giuseppe Persiano (UNISA+Google) CIAC 2023 25 / 64

Reading Block B2

Download block in position π(2)

M
O

. . . B2
. 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 2 π

π(2)

B2

Decrypt and obtain B2

Giuseppe Persiano (UNISA+Google) CIAC 2023 25 / 64

Reading Block B2

Copy B2 in the Stash at position nxt

M
O

. . . 0 0 B1 0 . . . 0

B1 0 . . . 0

cnt = 1 nxt = 3 π

B2

Encrypt and Upload the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 26 / 64

Reading Block B2

Copy B2 in the Stash at position nxt

M
O

. . . 0 0 B1 0 . . . 0

B1 B2
. . . 0

cnt = 1 nxt = 3 π

B2

Encrypt and Upload the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 26 / 64

Reading Block B2

Copy B2 in the Stash at position nxt

M
O

. . . 0 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 1 nxt = 3 π

B2

Encrypt and Upload the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 26 / 64

Status after reading B1 and B2

Now read B1 again

M
O

. . . 0 0 B1 B2
. . . 0

cnt = 1 nxt = 2 π

B1 is found in the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 27 / 64

Status after reading B1 and B2

Now read B1 again

M
O

. . . 0 0 B1 B2
. . . 0

cnt = 1 nxt = 2 π

B1 is found in the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 27 / 64

Status after reading B1 and B2

Download and decrypt all blocks from Stash

M
O

. . . 0 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 1 nxt = 2 π

B1 is found in the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 27 / 64

Status after reading B1 and B2

Download and decrypt all blocks from Stash

M
O

. . . 0 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 1 nxt = 2 π

B1 is found in the Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 27 / 64

Reading Block B1 (again)

Download block in position π(N + cnt)

M
O

. . . 0 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 1 nxt = 2 π

π(N + 1)

Giuseppe Persiano (UNISA+Google) CIAC 2023 28 / 64

Reading Block B1 (again)
Download block in position π(N + cnt)

M
O

. . . 0 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 1 nxt = 2 π

π(N + 1)

No need to decrypt

Giuseppe Persiano (UNISA+Google) CIAC 2023 28 / 64

Reading Block B1 (again)
Download block in position π(N + cnt)

M
O

. . . 0 0 B1 B2
. . . 0

B1 B2
. . . 0

cnt = 2 nxt = 2 π

Encrypt and Upload Stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 28 / 64

Why is this oblivious?

Independently from the operation, we have the following

Download stash

Download a random location that has not been downloaded yet

Upload re-encrypted stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 29 / 64

Two issues to be dealt with

What happens when the Stash is full?

How much memory does O need?
I needs to store cnt and nxt: Θ(1) memory;
I π needs O(N) memory.

Giuseppe Persiano (UNISA+Google) CIAC 2023 30 / 64

Two issues to be dealt with

What happens when the Stash is full?

How much memory does O need?
I needs to store cnt and nxt: Θ(1) memory;
I π needs O(N) memory.

Giuseppe Persiano (UNISA+Google) CIAC 2023 30 / 64

Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt π

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt π

Randomly select a new permutation σ

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

Download and decrypt first blockB17

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

Tag it with σ(17) encrypt and upload

14

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

14

Download and decrypt first block0

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

14

Tag it with ∞ encrypt and upload

∞

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Overflowing the Stash

M
O

B17 0 B9
. . . 0 . . . B4 B5

. . . 0 B1 B2
. . . 0

cnt nxt σ

14 ∞ 11 ∞ 2 1 ∞ 8 3 ∞

Obliviously sort according to tags

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Overflowing the Stash

M
O

σ

B5 B4 B2
. B9

. . . 0 0 . . . 0

cnt = 1 nxt = 1

Giuseppe Persiano (UNISA+Google) CIAC 2023 31 / 64

Amortized cost per read operation

Let us count:

each read costs

I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle

I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs

I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle

I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;

I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle

I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle

I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle

I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle
I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;

I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle
I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle
I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle
I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)

for M =
√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle
I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle
I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort.

Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle
I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant

In practice
√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

Amortized cost per read operation

Let us count:

each read costs
I Θ(M) blocks of bandwidth for the stash;
I Θ(1) blocks of bandwidth for real/dummy blocks;

after M reads, we shuffle
I Θ(M + N) = Θ(N) blocks of bandwidth for tagging;
I Θ((M +N) log(M +N)) = Θ(N logN) blocks of bandwidth for sorting;

for an amortized cost of

Θ

(
M +

N logN

M

)
for M =

√
N we have √

N · logN.

Using AKS to sort. Huge constant
In practice

√
N · log2 N.

Giuseppe Persiano (UNISA+Google) CIAC 2023 32 / 64

In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4 bytes integers=4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 33 / 64

In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4 bytes integers=4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 33 / 64

In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4 bytes integers=4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 33 / 64

In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4 bytes integers=4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 33 / 64

In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4 bytes integers=4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 33 / 64

In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4 bytes integers=4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 33 / 64

In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage
I cnt and nxt use constant storage

I π requires storing 106 4 bytes integers=4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 33 / 64

In practice... Jump ahead

One possible setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks.

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

using Batcher’s sort

Online cost
2 · 103 ≈ 2000

O’s storage
I cnt and nxt use constant storage
I π requires storing 106 4 bytes integers=4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 33 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage

I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage
I cnt and nxt use constant storage

I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage
I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes

I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Keep the stash in O’s memory Jump ahead

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash

Resources needed:

M’s storage: N + M = 106 + 103 blocks

Cost of shuffling amortized per read operation:

1/2 · 62 · 103 ≈ 18000

Online cost: 2 blocks per read

O’s storage
I cnt and nxt use constant storage
I π requires storing 106 4-byte integers=4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 34 / 64

Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?

I Use an ORAM!
I We only have two possible ORAMs:
I Download Stash uses the Download It ORAM to manage the Stash
I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 35 / 64

Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?

I Use an ORAM!
I We only have two possible ORAMs:
I Download Stash uses the Download It ORAM to manage the Stash
I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 35 / 64

Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?
I Use an ORAM!

I We only have two possible ORAMs:
I Download Stash uses the Download It ORAM to manage the Stash
I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 35 / 64

Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?
I Use an ORAM!
I We only have two possible ORAMs:

I Download Stash uses the Download It ORAM to manage the Stash
I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 35 / 64

Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?
I Use an ORAM!
I We only have two possible ORAMs:
I Download Stash uses the Download It ORAM to manage the Stash

I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 35 / 64

Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?
I Use an ORAM!
I We only have two possible ORAMs:
I Download Stash uses the Download It ORAM to manage the Stash
I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 35 / 64

Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?
I Use an ORAM!
I We only have two possible ORAMs:
I Download Stash uses the Download It ORAM to manage the Stash
I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 35 / 64

Download and Keep Stash

Use a cache (the Stash) to hide the repetition pattern

How does O hide access to the Stash?
I Use an ORAM!
I We only have two possible ORAMs:
I Download Stash uses the Download It ORAM to manage the Stash
I Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Giuseppe Persiano (UNISA+Google) CIAC 2023 35 / 64

Analysis

M
O

N blocks of data

B1 B2 B3
. . . BN

Giuseppe Persiano (UNISA+Google) CIAC 2023 36 / 64

Analysis

M
O

N + ρN.

ρN blocks of stash

0 0 0 . . . 0

Giuseppe Persiano (UNISA+Google) CIAC 2023 36 / 64

Analysis

M
O

N + ρN.

ρN + ρ2N. . .

ρ2N blocks of stash

0 0 . . . 0

Giuseppe Persiano (UNISA+Google) CIAC 2023 36 / 64

Analysis

M
O

N + ρN.

ρN + ρ2N. . .

ρ2N + ρ3N. . .

ρ3N blocks of stash

0 . . . 0

Giuseppe Persiano (UNISA+Google) CIAC 2023 36 / 64

Analysis

M
O

N + ρN.

ρN + ρ2N. . .

ρ2N + ρ3N. . .

ρ3N blocks of stash

0 . . . 0

Giuseppe Persiano (UNISA+Google) CIAC 2023 36 / 64

Analysis

M
O

N + ρN.

ρN + ρ2N. . .

ρ2N + ρ3N. . .

0 . . . 0

ρ = N−1/6
√
N blocks of stash

Giuseppe Persiano (UNISA+Google) CIAC 2023 36 / 64

Analysis

M
O

.

. . .

. . .

0 . . . 0

√
N blocks of stash

N2/3 + N1/2

N5/6 + N2/3

N + N5/6

Giuseppe Persiano (UNISA+Google) CIAC 2023 36 / 64

Analysis

M
O

.

. . .

. . .

0 . . . 0

√
N blocks of stash

N2/3 + N1/2

N5/6 + N2/3

N + N5/6

Position Map

(levi, posi) i = 1, . . . ,NLevel 0

Level 1

Level 2

Level 3

Giuseppe Persiano (UNISA+Google) CIAC 2023 36 / 64

3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0

I for all l 6= levq, O asks for the next dummy in level l ;
I asks for block in posq from level levq;
I Bq is then stored in level 0 and (levq, posq) is updated;

else

I for l = 1, 2, 3, O asks for the next dummy in level l ;
I block Bq is retrieved from local stash (level 0);

Giuseppe Persiano (UNISA+Google) CIAC 2023 37 / 64

3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0

I for all l 6= levq, O asks for the next dummy in level l ;
I asks for block in posq from level levq;
I Bq is then stored in level 0 and (levq, posq) is updated;

else

I for l = 1, 2, 3, O asks for the next dummy in level l ;
I block Bq is retrieved from local stash (level 0);

Giuseppe Persiano (UNISA+Google) CIAC 2023 37 / 64

3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0
I for all l 6= levq, O asks for the next dummy in level l ;

I asks for block in posq from level levq;
I Bq is then stored in level 0 and (levq, posq) is updated;

else

I for l = 1, 2, 3, O asks for the next dummy in level l ;
I block Bq is retrieved from local stash (level 0);

Giuseppe Persiano (UNISA+Google) CIAC 2023 37 / 64

3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0
I for all l 6= levq, O asks for the next dummy in level l ;
I asks for block in posq from level levq;

I Bq is then stored in level 0 and (levq, posq) is updated;

else

I for l = 1, 2, 3, O asks for the next dummy in level l ;
I block Bq is retrieved from local stash (level 0);

Giuseppe Persiano (UNISA+Google) CIAC 2023 37 / 64

3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0
I for all l 6= levq, O asks for the next dummy in level l ;
I asks for block in posq from level levq;
I Bq is then stored in level 0 and (levq, posq) is updated;

else

I for l = 1, 2, 3, O asks for the next dummy in level l ;
I block Bq is retrieved from local stash (level 0);

Giuseppe Persiano (UNISA+Google) CIAC 2023 37 / 64

3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0
I for all l 6= levq, O asks for the next dummy in level l ;
I asks for block in posq from level levq;
I Bq is then stored in level 0 and (levq, posq) is updated;

else

I for l = 1, 2, 3, O asks for the next dummy in level l ;
I block Bq is retrieved from local stash (level 0);

Giuseppe Persiano (UNISA+Google) CIAC 2023 37 / 64

3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0
I for all l 6= levq, O asks for the next dummy in level l ;
I asks for block in posq from level levq;
I Bq is then stored in level 0 and (levq, posq) is updated;

else
I for l = 1, 2, 3, O asks for the next dummy in level l ;

I block Bq is retrieved from local stash (level 0);

Giuseppe Persiano (UNISA+Google) CIAC 2023 37 / 64

3-level ORAM: Querying

Querying Bq

retrieve (levq, posq) from local memory;

if levq 6= 0
I for all l 6= levq, O asks for the next dummy in level l ;
I asks for block in posq from level levq;
I Bq is then stored in level 0 and (levq, posq) is updated;

else
I for l = 1, 2, 3, O asks for the next dummy in level l ;
I block Bq is retrieved from local stash (level 0);

Giuseppe Persiano (UNISA+Google) CIAC 2023 37 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries

I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries

I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries

I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries

I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;

I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries

I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries

I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times

I total cost: 4 · N7/6

level 1 is full after N2/3 queries

I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries

I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries

I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;

I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times

I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries

I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries
I it is shuffled with the level 3 of size N;

I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries
I it is shuffled with the level 3 of size N;
I each shuffle costs 4N

I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries
I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times

I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries
I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries
I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: Analysis
at the start only level 3 contains real blocks;

the local stash is full after N1/2 queries
I it is shuffled with the level 1 of size N2/3;
I each shuffle costs 4N2/3

I over N queries, it happens N1/2 times
I total cost: 4 · N7/6

level 1 is full after N2/3 queries
I it is shuffled with the level 2 of size N5/6;
I each shuffle costs 4N5/6

I over N queries, it happens N1/3 times
I total cost: 4 · N7/6

level 2 is full after N5/6 queries
I it is shuffled with the level 3 of size N;
I each shuffle costs 4N
I over N queries, it happens N1/6 times
I total cost: 4 · N7/6

Over N queries, the cost is 12 · N7/6

I each query has an amortized cost of 12N1/6 blocks;

Giuseppe Persiano (UNISA+Google) CIAC 2023 38 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage

I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage

I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage

I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage

I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage

I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage

I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage
I cnt and nxt use constant storage

I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage
I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes

I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

3-level ORAM: in practice

Same setting:

N = 106 blocks of 4K each for a total of 4 Gigabytes

M = 103 blocks of stash for a total of 4 Megabytes

Resources needed:

M’s storage: 106 + 2 · 105 + 2 · 104 + 103 = 1, 221, 000 blocks

Cost of shuffling amortized per read operation:

4 · 103 ≈ 120

Online cost: 3 blocks downloaded

O’s storage
I cnt and nxt use constant storage
I position map requires storing 106 6-byte integers ≈ 4 Megabytes
I 1000 blocks of stash for a total of 4 Megabytes

Giuseppe Persiano (UNISA+Google) CIAC 2023 39 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with

I N + N/2 blocks
I N/2 + N/4 blocks
I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N

I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with

I N + N/2 blocks
I N/2 + N/4 blocks
I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N

I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with
I N + N/2 blocks

I N/2 + N/4 blocks
I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N

I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with
I N + N/2 blocks
I N/2 + N/4 blocks

I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N

I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with
I N + N/2 blocks
I N/2 + N/4 blocks
I . . .

I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N

I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with
I N + N/2 blocks
I N/2 + N/4 blocks
I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N

I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with
I N + N/2 blocks
I N/2 + N/4 blocks
I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N

I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with
I N + N/2 blocks
I N/2 + N/4 blocks
I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N
I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Why stop at 3 levels?

O’s memory ≈
√
N

set ρ = 1/2

1/2 log2 N levels with
I N + N/2 blocks
I N/2 + N/4 blocks
I . . .
I 3
√
N blocks

Amortized bandwidth 0.55 · log2 N
I For N = 106, 21 Blocks

OnLine bandwidth: 1 Block

Giuseppe Persiano (UNISA+Google) CIAC 2023 40 / 64

Asymptotics

Hierarchical Approach with constant client memory

O(log3 N) – Goldreich-Ostrovsky 1987-1990

O((log2 N)/ log logN) – Kushilevitz-Lu-Ostrovsky 2012

O(logN · log logN) – Patel-P-Raykova-Yeo 2018

O(logN) – Asharov-Komargodski-Lin-Nayak-Peserico-Shi 2020

Ω(log(N/C)) – Larsen-Nielsen 2018

Giuseppe Persiano (UNISA+Google) CIAC 2023 41 / 64

Asymptotics

Hierarchical Approach with constant client memory

O(log3 N) – Goldreich-Ostrovsky 1987-1990

O((log2 N)/ log logN) – Kushilevitz-Lu-Ostrovsky 2012

O(logN · log logN) – Patel-P-Raykova-Yeo 2018

O(logN) – Asharov-Komargodski-Lin-Nayak-Peserico-Shi 2020

Ω(log(N/C)) – Larsen-Nielsen 2018

Giuseppe Persiano (UNISA+Google) CIAC 2023 41 / 64

Differential Privacy ORAM

(ε, δ)-Differential Privacy

M stores n blocks of memory.

Every time O wants a block, he asks M one or more blocks.

Security notion:
I For any two block sequences B = B1, . . . ,Bn and C = C1, . . . ,Cn
I For any two access sequences i1, . . . , il and j1, . . . , jl that differ in one

position
F performing access i1, . . . , il on B = B1, . . . ,Bn;
F performing access j1, . . . , jl on C = C1, . . . ,Cn

generate the same distribution of accesses to the data stored by M

For every predicate A

Prob[view← View(I ,B) : A(view) = 1]

≤ eε · Prob[view← View(J,C) : A(view) = 1] + δ

Ω(log(N/C)) – P-Yeo 2019

Giuseppe Persiano (UNISA+Google) CIAC 2023 42 / 64

Differential Privacy ORAM

(ε, δ)-Differential Privacy

M stores n blocks of memory.

Every time O wants a block, he asks M one or more blocks.

Security notion:
I For any two block sequences B = B1, . . . ,Bn and C = C1, . . . ,Cn
I For any two access sequences i1, . . . , il and j1, . . . , jl that differ in one

position
F performing access i1, . . . , il on B = B1, . . . ,Bn;
F performing access j1, . . . , jl on C = C1, . . . ,Cn

generate the same distribution of accesses to the data stored by M

For every predicate A

Prob[view← View(I ,B) : A(view) = 1]

≤ eε · Prob[view← View(J,C) : A(view) = 1] + δ

Ω(log(N/C)) – P-Yeo 2019

Giuseppe Persiano (UNISA+Google) CIAC 2023 42 / 64

Differential Privacy ORAM

(ε, δ)-Differential Privacy

M stores n blocks of memory.

Every time O wants a block, he asks M one or more blocks.

Security notion:
I For any two block sequences B = B1, . . . ,Bn and C = C1, . . . ,Cn
I For any two access sequences i1, . . . , il and j1, . . . , jl that differ in one

position
F performing access i1, . . . , il on B = B1, . . . ,Bn;
F performing access j1, . . . , jl on C = C1, . . . ,Cn

generate the same distribution of accesses to the data stored by M

For every predicate A

Prob[view← View(I ,B) : A(view) = 1]

≤ eε · Prob[view← View(J,C) : A(view) = 1] + δ

Ω(log(N/C)) – P-Yeo 2019
Giuseppe Persiano (UNISA+Google) CIAC 2023 42 / 64

The snapshot adversary

the Server is the adversary

Snapshot Adversary

Du, Genkin, Grubbs, 2022

The adversary gets control of the Server for L consecutive operations
I Slowdown O(log L)

What if the adversary is active for more than one window?

Giuseppe Persiano (UNISA+Google) CIAC 2023 43 / 64

The snapshot adversary

the Server is the adversary

Snapshot Adversary

Du, Genkin, Grubbs, 2022

The adversary gets control of the Server for L consecutive operations
I Slowdown O(log L)

What if the adversary is active for more than one window?

Giuseppe Persiano (UNISA+Google) CIAC 2023 43 / 64

The snapshot adversary

Snapshot window (t, `)

A snapshot window of length ` starting at time t.

The adversary receives
I snapshot of server memory content before operation t has been

executed
I transcript of server’s operations for the following ` operations that take

place at times t, t + 1, . . . , t + `− 1.

For ` = 0, only memory content before operation t.

A (S , L)-snapshot adversary

Specifies a sequence of snaspshot windows S = ((t1, `1), . . . , (ts , `s)) such
that

s ≤ S , at most S windows,
I at most S snapshots∑
`i ≤ L, for a total duration of at most L operations
I at most L transcripts

Giuseppe Persiano (UNISA+Google) CIAC 2023 44 / 64

The Lower Bound

Theorem (P-Yeo 23)

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

Giuseppe Persiano (UNISA+Google) CIAC 2023 45 / 64

The Lower Bound

Theorem (P-Yeo 23)

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

n logical blocks of b bits

Giuseppe Persiano (UNISA+Google) CIAC 2023 45 / 64

The Lower Bound

Theorem (P-Yeo 23)

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

w < b is size physical words

Giuseppe Persiano (UNISA+Google) CIAC 2023 45 / 64

The Lower Bound

Theorem (P-Yeo 23)

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

Client has c bits of local memory

Giuseppe Persiano (UNISA+Google) CIAC 2023 45 / 64

The Lower Bound

Theorem (P-Yeo 23)

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1,ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

Adversary receives at most 3 memory snapshots and 1 operation transcript

Giuseppe Persiano (UNISA+Google) CIAC 2023 45 / 64

The Lower Bound

Theorem (P-Yeo 23)

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

ε is the adversary’s advantage in the security game

Giuseppe Persiano (UNISA+Google) CIAC 2023 45 / 64

The security game

Exptn,βDS,A
Receive (O0,O1, ((t1, `1), . . . , (ts , `s))) from A0(1n).

Set L ← ∅, DS← (R1, . . . ,Rn), i ← 1.

While i ≤ |Oβ|:
I If i = tj for some 1 ≤ j ≤ s:

F Set L ← L || (memory,M).
F For k = 1, . . . , `j :

Execute DSLRead,LWrite(Ob[i]) and set i ← i + 1.

I Else:
Execute DSRead,Write(Ob[i]) and set i ← i + 1.

Return A1(L).

∣∣∣Pr[Exptn,0DS,A = 1]− Pr[Exptn,1DS,A = 1]
∣∣∣ ≤ ε,

for all PPT A that are (S , L)-snapshot adversaries.

Giuseppe Persiano (UNISA+Google) CIAC 2023 46 / 64

The Epoch structure

The sequence and the epochs

n logical indices

m← {n/2 + 1, . . . , n}
m writes of random b-bit blocks at indices 1, 2, . . . ,m

followed by one read.

tim
e

rop
era

ion
s

Iop
era

tion

L

Epoc
h Ech
o

Giuseppe Persiano (UNISA+Google) CIAC 2023 47 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices

I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1

I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent

I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough

I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Intuition Jump

Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 48 / 64

A (3, 1)-snapshot adversary – Part 0

Ai
0(1n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (UNISA+Google) CIAC 2023 49 / 64

A (3, 1)-snapshot adversary – Part 0

Ai
0(1n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (UNISA+Google) CIAC 2023 49 / 64

A (3, 1)-snapshot adversary – Part 0

Ai
0(1n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (UNISA+Google) CIAC 2023 49 / 64

A (3, 1)-snapshot adversary – Part 0

Ai
0(1n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (UNISA+Google) CIAC 2023 49 / 64

A (3, 1)-snapshot adversary – Part 0

Ai
0(1n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b. Important

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (UNISA+Google) CIAC 2023 49 / 64

A (3, 1)-snapshot adversary – Part 1

Ui memory locations overwritten during epoch i
I by comparing the initial and final snapshot of epoch i

Vi memory locations overwritten since epoch i
I by comparing the final snapshot of epoch i with snapshot before the

read

Wi memory location overwritten during epoch i that have not been
modified when the read starts

I Wi = Ui \ Vi

Qj cells from Wi read during read(j),

|Qj | ≈ b/w
I A1 returns 0 iff |Qj | ≤ ρ · b/w

Giuseppe Persiano (UNISA+Google) CIAC 2023 50 / 64

The coding argument

Suppose
tw = o(b/w log(nb/c))

then there exists ρ > 0 such that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i .

Suppose not.
Then we can encode the r i · b bits of epoch i using fewer bits.

Giuseppe Persiano (UNISA+Google) CIAC 2023 51 / 64

The coding argument

Suppose
tw = o(b/w log(nb/c))

then there exists ρ > 0 such that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i .

Suppose not.

Then we can encode the r i · b bits of epoch i using fewer bits.

Giuseppe Persiano (UNISA+Google) CIAC 2023 51 / 64

The coding argument

Suppose
tw = o(b/w log(nb/c))

then there exists ρ > 0 such that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i .

Suppose not.
Then we can encode the r i · b bits of epoch i using fewer bits.

Giuseppe Persiano (UNISA+Google) CIAC 2023 51 / 64

The coding argument - I

A coding game

S wants to send Bi to R
I the r i blocks from epoch i

S and R share
I B−i (all except epoch i)
I randomness R to execute DS.

H(Bi |R,B−i) = r i · b.

Giuseppe Persiano (UNISA+Google) CIAC 2023 52 / 64

The coding argument - II

S and R execute all epochs > i

write(1,B1), . . . ,write(pi − 1,Bpi−1)

12

Giuseppe Persiano (UNISA+Google) CIAC 2023 53 / 64

The coding argument
S executes epoch i

write(pi ,Bpi), . . . ,write(pi + r i − 1,Bpi+r i−1)

Note: R cannot execute epoch i

123

The brown cells are in U;

sat of memar y calls
updated durine,

Epoch

Teliont
memory

Giuseppe Persiano (UNISA+Google) CIAC 2023 54 / 64

The coding argument
S and R execute epochs < i

I R needs some help
F client memory: c bits.

For j = pi−1, . . . ,m
I execute write(j ,Bj) touching Tj

I R needs Ui ∩ Tj (cell location and content)

1 2 3
writels, B,)

Telioyt
memory

Giuseppe Persiano (UNISA+Google) CIAC 2023 55 / 64

The coding argument
c bits + set Yi := Ui ∩ (Tpi+ri ∪ · · · ∪ Tm)

during
Epoch

Ercbs

M

Giuseppe Persiano (UNISA+Google) CIAC 2023 56 / 64

The coding argument

S memory state after write(m,Bm)

For j = pi , . . . , pi + r i − 1
I S and R execute read(j) starting from S
I R needs Qj := Wi ∩ Tm

j
I if read errs or Qj > ρb/w

F Bj is added to encoding

I else
F Qj is added to encoding

Giuseppe Persiano (UNISA+Google) CIAC 2023 57 / 64

Length of encoding

Length depends on

Set Yi

I for most epochs i , E[|Yi |] ≤ r i−1b/w

Set Qj

I By assumption |Qj | < ρ · b/w with prob ≥ 7/8

Encoding is too small

Giuseppe Persiano (UNISA+Google) CIAC 2023 58 / 64

Length of encoding

Length depends on

Set Yi

I for most epochs i , E[|Yi |] ≤ r i−1b/w

Set Qj

I By assumption |Qj | < ρ · b/w with prob ≥ 7/8

Encoding is too small

Giuseppe Persiano (UNISA+Google) CIAC 2023 58 / 64

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i . from epoch i .

Giuseppe Persiano (UNISA+Google) CIAC 2023 59 / 64

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

Giuseppe Persiano (UNISA+Google) CIAC 2023 59 / 64

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

If ε = 1/16 then A outputs 1 with probability ≥ 1/16 when reading m

Giuseppe Persiano (UNISA+Google) CIAC 2023 59 / 64

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

If ε = 1/16 then A outputs 1 with probability ≥ 1/16 when reading m

read(m) must touch ≥ ρ · b/w cells from epoch i

Giuseppe Persiano (UNISA+Google) CIAC 2023 59 / 64

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

If ε = 1/16 then A outputs 1 with probability ≥ 1/16 when reading m

read(m) must touch ≥ ρ · b/w cells from epoch i

Ω(b/w · log nb/c)

Giuseppe Persiano (UNISA+Google) CIAC 2023 59 / 64

Wrapping up

Now...

If writes are fast
tw = o(b/w log(nb/c))

then read(j) in epoch i has Qj = Ω(b/w) with prob at least 1/8.

Reading 1

Must touch from each large epoch O(b/w) cells otherwise we lose security.

Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 60 / 64

Wrapping up

Now...

If writes are fast
tw = o(b/w log(nb/c))

then read(j) in epoch i has Qj = Ω(b/w) with prob at least 1/8.

Reading 1

Must touch from each large epoch O(b/w) cells otherwise we lose security.

Ω(b/w · log(nb/c))

Giuseppe Persiano (UNISA+Google) CIAC 2023 60 / 64

(∞, 0)-snapshot secure stacks

Adversary gets snapshots of memory after all operations.

Snapshot Secure Stacks

Init()
I randomly choose encryption key K
I set cnt = 0 and top = −1.

Push(v)
I upload Enc(K , (v , top)) to location cnt
I set top← cnt
I set cnt← cnt + 1

Pop()
I download pair (v , t) from location top
I upload a dummy encryption to location cnt
I set top← t
I set cnt← cnt + 1
I return v

Giuseppe Persiano (UNISA+Google) CIAC 2023 61 / 64

(∞, 1)-snapshot secure stacks
Adversary gets snapshots of memory after all operations and one
transcript.

Snapshot Secure Stacks

Init()
I randomly choose seed S
I randomly choose encryption key K
I set cnt = 0 and top = −1.

Push(v)
I download from location F (S , top) and discard
I upload Enc(K , (v , top)) to location F (S , cnt)
I top← cnt
I cnt← cnt + 1

Pop()
I download pair (v , t) from location F (S , top)
I upload dummy encryption at location F (S , cnt)
I set top← t
I set cnt← cnt + 1
I return v

Giuseppe Persiano (UNISA+Google) CIAC 2023 62 / 64

(∞, 1)-snapshot secure stacks
Adversary gets snapshots of memory after all operations and one
transcript.

Snapshot Secure Stacks

Init()
I randomly choose seed S
I randomly choose encryption key K
I set cnt = 0 and top = −1.

Push(v)
I download from location F (S , top) and discard
I upload Enc(K , (v , top)) to location F (S , cnt)
I top← cnt
I cnt← cnt + 1

Pop()
I download pair (v , t) from location F (S , top)
I upload dummy encryption at location F (S , cnt)
I set top← t
I set cnt← cnt + 1
I return v

Giuseppe Persiano (UNISA+Google) CIAC 2023 62 / 64

Conclusions

Θ(log(N/C)) for ORAM
I Oblivious
I DP
I Leakage
I Snapshot Adversary

Giuseppe Persiano (UNISA+Google) CIAC 2023 63 / 64

Take home items

Access pattern leakage is a privacy threat
I Metadata

It is possible to hide access pattern
I at the cost of a logarithmic slowdown

Theoretical questions:
I is there a meaningfull security notion that requires constant slowdown?
I construct oblivious algorithms for specific problems

Theoretical questions:
I can we get a practical Secure RAM for reasonable parameters?

F server memory of about 100 GigaBytes
F client memory of about 100 Megabyte
F single digit slowdown

Giuseppe Persiano (UNISA+Google) CIAC 2023 64 / 64

	Privacy in Cloud Storage
	Oblivious Algorithms
	An inefficient ORAM
	An insecure ORAM
	A first secure ORAM

