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Motivation
Importance of Spanning Trees
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Path Finding

Routing

Graph Embedding

Spanning trees are essential in many algorithms related to path finding, network routing, 
topological graph embedding, etc. One seek spanning trees of different characteristics for 
different applications.

https://happycoding.io/tutorials/libgdx/pathfinding
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Motivation
Importance of Spanning Tree Enumeration

• Spanning tree enumeration was a concern as early as Kirchoff’s analysis of electrical circuits in 1847.
• In many early papers, spanning tree enumeration is considered often an efficient solution to spanning tree 

counting problem which takes O(n3) using Kirchoff’s matrix tree theorem for a graph with n vertices.
• On trees of a graph and their generation by Hakimi, S, 1961

• In present day parallel computers, enumeration as an alternative for counting via matrix determinant calculation is 
not that appealing.

• However, often individual spanning trees are needed, for example:
• In topological synthesis of networks.

• Generation and realization of trees and k-trees by Hakimi, S., Green, D., 1964 
• In construction of nets of polyhedra, multi-robots spanning tree routing.

• Enumeration of Spanning Trees Using Edge Exchange with Minimal Partitioning by Naser Mohamed, 2014
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Our work is focused on generating the individual trees as part of the enumeration process.
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Related Work
Analysis of the State of the Art

• The current best algorithms for spanning tree enumeration in general graphs utilizes the property that the 
set of all spanning trees of a graph form a connected search space.
• .There is an edge between two spanning trees in the search space if we can switch between them by exchanging a 

pair of edges. 
• Therefore, traversing that search space by forming its spanning tree will enumerate all spanning trees of 

the original graph.
• The principal part of the time complexity of these algorithms is related to discovering the edges between 

the nodes of the search space. The underlying logic for this operation is to find fundamental cycles of 
individual spanning trees. 

• The space complexity arises from the need of maintaining an ordered  list of edges per node to avoid 
reentering the same node in the search space during traversal. 
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Spanning tree edge

Edge forming a fundamental cycle 
with the spanning tree



Proposed Solution
General Approach

• Instead of approaching the spanning tree enumeration problem as a search space traversal problem, approach it 
as an inductive generation problem where:
• There are a fixed number of fundamental extension operations.
• The vertices of the input graph G

n
 with n vertices are given a certain order.

• Then, spanning trees of larger intermediate induced subgraph G
i
 are generated by extending spanning trees of 

smaller induced subgraph G
i-1

 by applying those fundamental extension operations.

• Here proper choice of the fundamental extension operations is essential to ensure that all spanning trees are 
generated.

• A careful ordering of vertices is needed to avoid duplicate tree generation.
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This approach has the potential to improve time and space complexities of spanning 
tree enumeration beyond the state of the art for specific graph classes.

In the paper, we adopt  this approach  for plane 3-trees.



Plane 3-Tree Definition
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● A plane 3-tree in three vertex is a triangle.
● A plane 3-tree of n vertices is constructed by adding a new vertex of degree 3 to further triangulate a 

face of a plane 3-tree of n - 1 vertices.

We will refer a plane 3-tree of n vertices as G
n
, unless otherwise specified.



Inductive Algorithm
Fundamental Extension Operations
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Edge Extension

Edge Subdivision

Root Extension

Note that the fundamental extension operations are applicable if and only if the spanning tree of an intermediate graph has a 
certain topology. That is, not all extensions can be used in all spanning trees.

Extension Operations for Plane 3-tree



Inductive Algorithm
Vertex Ordering of Extension Application

• If we repeatedly delete degree-3 vertices of a plane 3-tree and keep track of the faces from where each vertex was extracted 
during removal, we get an ordering of vertices except for the three vertices of the outer face.

• We call the reverse of that removal order, a dividing vertex sequence and corresponding face description, face vertex set 
sequence.  

• After labeling the vertices of the outer face -2, -1, 0 arbitrarily, we label each vertex based on its position in the dividing vertex 
sequence. We call this label, the dividing order of a vertex.

• Spanning trees are constructed by adding vertices in intermediate spanning trees in increasing dividing order.
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Inductive Algorithm
General Description

• Starts with a set of spanning trees of G
3

• which are three paths of length two connecting the outer face vertices.
• Consider the other vertices in increasing dividing order.
• Inductively generate all spanning trees of G

i
 from all spanning trees of G

i-1
 by adding the ith dividing vertex 

v
i
 with face vertex set {f

1
, f

2
, f

3
} as follows:

• For each spanning tree T
i-1

:
• Add v

i
 to using the three possible edge extensions from {f

1
, f

2
, f

3
}.

• If two of the three vertices from {f
1
, f

2
, f

3
} are adjacent in T

i-1 
then also extend T

i-1 
using edge 

subdivisions for v
i 
in all applicable cases.

• If {f
1
, f

2
, f

3
} forms a path of length two in T

i-1
 with the vertex with intermediate dividing order 

among the three in the middle of the path then also apply a root extension.
• Add all newly generated T

i
 in this manner in a growing set of spanning trees for G

i
.
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In the paper, we proved that this strategy enumerate all spanning trees of Gn without producing duplicates.
However, there are efficiency concern. 

Which we address in the next algorithm.



Inductive Algorithm
Illustration of Spanning Tree Construction

13

1

2
3

4

5
6

7

8

1

2
3

4

5
6

7

8

1

2 3

4

5
6

7

1

2 3

4

5
6

1

2 3

4

5

1

2 3

4

1

2 3

Starting Tree Edge Subdivision for 4 Edge Extension for 5

Edge Extension for 6Edge Extension for 7Root Extension for 8



Inductive Algorithm
Limitations and Analysis

• The algorithm requires all spanning trees of G
n-1

 in memory to generate all spanning trees of G
n
. That gives the 

total space complexity of O(nt) for a G
n
 with t spanning trees.

• Generating a T
i
 from a T

i-1
 requires an array copy operation, that makes the running time of the algorithm O(n + 

nt).
• Therefore, the algorithm is not better than the state of the art – it is just different.
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However, the inductive algorithm has some key characteristics:
1. Vertices are added in all spanning trees following the same order.
2. There is no coordination/cross-checking between two spanning trees of G

i-1
 when generating 

spanning trees from G
i
.

3. Extension applied for vertex with dividing order i can only affect the connectivity of vertices in 
its face vertex set during generate a spanning tree.

These characteristics lead to a much more efficient algorithm for spanning tree enumeration using dynamic 
programming.



Dynamic Programming for Spanning Tree Enumeration
General Strategy

• Instead of following the inductive process of generating all spanning trees for intermediate graph G
i
 from 

all spanning trees of immediate predecessor G
i-1

, we consider the recursive process of adding the 
remaining vertices of G

n
 in all possible ways after a sequence of extensions for vertices of G

i-1
 have been 

made.
• Then, we convert the process of extending smaller spanning trees to larger spanning trees into an 

alternative process of mutating an existing spanning tree to another by changing what fundamental 
extension being applied for a particular vertex during the recursive process.    
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As the fundamental extension operations for a vertex v is applied to attach v with the 
three vertices in its face vertex set {f1, f2, f3} only, the possible mutation for v are 
few.
In fact, there are only 7 possible placements of v relative to its face vertex sets.

Allows us to enumerate all spanning trees without keeping more 
than one tree in the memory at a time.

Allows us to reverse and switch to a new mutation during 
folding and re-unrolling of recursion from specific point 
without extensive backtrace management .



Dynamic Algorithm
Placement Mutations for a Vertex

Suppose vertex v’s face vertex is is {f
1
, f

2
, f

3
} with the following condition holding for their dividing order, 

dividing_order(f
1
) < dividing_order(f

2
) < dividing_order(f

3
). Then we define a baseline placement of v relative to 

its face vertex set and possible mutation of the baseline as follows: 
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● During recursion unfolding from a specific vertex, v
i
, we apply all possible mutations from the baseline for v

.
● During folding back and returning to vi-1, we revert v to its baseline position.



Dynamic Algorithm
DP Relationship between Parent and Sub-problems.

Assume the vertices of G
n
 ordered by increasing dividing orders are v

0
, v

1
, v

2
, v

3
, …, v

n
. Then the set of 

spanning trees of G
n
 can be expressed using the following DP expression:

t
n
 = set of all spanning trees of G

n
 generated by adding v

2
 in baseline arrangement  

U6
i=1,  mutation i is applicable

 {set of all spanning trees of G
n
 generated 

                                               by adding v
2
 in ith mutation arrangement}.
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This strategy works due to  the same  reason inductive spanning tree generation process works: 
1. Two spanning trees T

1
 and T

2
 must differ in at least one position in the inductive extension process regarding 

what fundamental extension operation being used for the corresponding vertex.
2. The same spanning tree cannot be generated by two different sequences of fundamental extension 

operations.  



Inductive Algorithm
Illustration of Spanning Tree Construction
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We will see how this same spanning tree is generated following the DP algorithm.



Dynamic Algorithm
Illustration of Generation of a Specific Spanning Tree

19

1

2
3

4

5
6

7

8

1

2
3

4

5
6

7

8

Baseline Tree

1

2
3

4

5
6

7

8

1

2
3

4

5
6

7

8

1

2

3

4

5
6

7

8

1

2

3

4

5
6

7

8

1

2

3

4

5
6

7

8

1

2

3

4

5
6

7

8

Mutation 1 for 3 Mutation 3 for 4 Mutation 2 for 5

Keep baseline for 6Mutation 1 for 7Mutation 6 for 8

Notice that the DP algorithm will output all of these intermediate spanning trees before outputting the final spanning tree.



Dynamic Programming Algorithm
Performance Factors

• The DP algorithm only keeps one tree in the memory along with the dividing vertex and the face vertex set 
sequences. Therefore the space complexity of the algorithm is just O(n).

• The cost of generating the baseline tree is O(n), afterwards the cost of repeated mutation and foldback of 
mutation when generating the other spanning trees depends on two things:
• The cost of finding if a certain mutation is applicable  in the current spanning tree.

• As a mutation emulates a fundamental extension, just like an extension, a mutation is possible if the members of the face 
vertex sets of the current vertex forms a specific connection topology.

• Applying the mutation and later cancelling it during recursion foldback.
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We design a data structure to represent spanning trees that allows both of these operations to be done in constant time.



Dynamic Programming Algorithm
Spanning Tree Data Structure

• We maintain an array of length n - 1 to store a spanning tree of G
n
.

• Here the ith index of the array holds the dividing order of the vertex that is the other end of an edge 
connecting vertex with dividing order i - 1.

• Evaluating whether a certain mutation is possible on the current tree for the current vertex under 
consideration requires probing the array entries correspond to its face vertex sets.

• Applying a mutation or reversing it makes a constant number of changes in the array.
• As array index access is a constant time operation, spanning tree mutation is a constant time operation also.  
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With this spanning tree data structure, enumerating all spanning trees of G
n
 having t spanning trees take O(n + t) time.



Future Work

• We believe the approach we propose is generally useful for spanning tree enumeration of different graph 
classes.

• Regular graphs, k-trees, graphs with a small maximum degree, etc. can be interesting larger classes for 
future investigation using our approach. 
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Thanks!


