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Abstract. A spanning tree T of a connected, undirected graph G is
an acyclic subgraph having all vertices and a minimal number of edges
of G connecting those vertices. Enumeration of all possible spanning
trees of undirected graphs is a well-studied problem. Solutions exist for
enumeration for both weighted and unweighted graphs. However, these
solutions are either space or time efficient. In this paper, we give an
algorithm for enumerating all spanning trees in a plane 3-tree that is
optimal in both time and space. Our algorithm exploits the structure of
a plane 3-tree for a conceptually simpler alternative to existing general-
purpose algorithms and takes O(n+m+ τ) time and O(n) space, where
the given graph has n vertices, m edges, and τ spanning trees. This is a
substantial improvement in both time and space complexity compared to
the best-known algorithms for general graphs. We also propose a parallel
algorithm for enumerating spanning trees of a plane 3-tree that hasO(n+
m + nτ

p
) time and O(nτ

p
) space complexities for p parallel processors.

This alternative algorithm is useful when storing the spanning trees is
important.

Keywords: Spanning Tree Enumeration · Plane 3-Tree · Time and
Space Complexity
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1 Introduction

A spanning tree of a connected undirected graph G is a subgraph that is a
tree spanning all vertices of G. Spanning trees have always been a focus for
researchers when dealing with various graph-related problems due to their wide
range of applications in areas such as computer networks, telecommunications
networks, transportation networks, water supply networks, and electrical grids.

The enumeration of all spanning trees of a graph G is to find all possible
distinct edge combinations which minimally connect all its vertices without in-
troducing any cycle. Enumerating all possible spanning trees is often crucial in
electrical circuits, routing networks, and other network analysis and optimiza-
tion applications [3]. For example, the current flow of an electrical network is
associated with the sum of electrical admittances in its spanning trees [13] [1].
The main issues with spanning tree enumeration are exponential time complex-
ity, costly storage space requirements, and duplicate tree generation. Various
algorithms with varying degrees of efficiency exist in the literature addressing
these issues [2] [14] [10] [7] [6] [5] [9]. To the best of our knowledge, however, no
solution exists that is optimal in all these aspects for any complex graph class.

Char’s [2] 1968 algorithm is among the first works on spanning tree enumera-
tion. For a G with n vertices and m edges, it considers all possible combinations
of n − 1 edges as potential spanning trees and gives unique spanning trees as
output. The algorithm assigns the vertices of G increasing orders from 1 to n,
where n is the number of vertices. It next selects the nth vertex as the root of all
spanning trees. Then the algorithm repeatedly emits sequences of n−1 numbers
as a permutation of vertex orders, where the ith number in the sequence is the
endpoint of an edge originating from the vertex with order i. Although the al-
gorithm avoids duplicate tree generation, its major limitation is that it involves
checking if a sequence forms a spanning tree or some other cyclic subgraph. If τ ′

and τ denote the numbers of non-tree and tree sequences of G, respectively, then
the time complexity of the algorithm is O(m+ n+ τ + τ ′). The space required
by Char’s algorithm is O(nm). This space overhead is due to a tabular structure
that lists all adjacent vertices of each vertex.

The algorithm Rakshit et al. proposed in 1981 [14] is quite similar to Char’s
algorithm. The privileged reduced incidence-edge structure (PRIES) that the
algorithm proposes is effectively the exact structure of [2]. The difference be-
tween the two algorithms lies in how they detect non-tree edge sequences. While
Char’s algorithm repeatedly checks for cycle to prune non-tree edge sequences,
Rakshit’s algorithm does that by repeatedly removing two “pendant” vertices
[4] from a sequence and checking the degrees of remaining vertices. The time
and space complexities of this algorithm are similar to Char’s algorithm. Both
algorithms are superior in time complexity to their contemporary alternative
tree enumeration algorithms [10] [7] [6] as they avoid duplicate edge sequence
generation and prune some non-tree sequences using the geometric properties of
the input graph.

Gabow and Myers [5] and Matsui [9] improve the time complexity of span-
ning tree enumeration from earlier algorithms by avoiding evaluating candidate
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sequences of vertices that cannot form a connected subgraph. Both algorithms
recursively generate spanning trees by growing them from smaller sub-trees and
checking whether adding a new edge on a growing tree will produce a cycle.
Gabow and Myers’ algorithm traverses the input graph G in depth-first-order
from a single pivot vertex that the algorithm considers the root of all spanning
trees of G. As it grows a tree from that root vertex, the algorithm removes
and restores edges in G in a deterministic order to avoid duplicate tree gener-
ation. The algorithm works for both directed and undirected graphs and takes
O(n+m+mτ) and O(n+m+ nτ) times for the former and the latter respec-
tively. The vertex and edge count multiplier over the number of spanning trees
τ in this algorithm is due to checking all possible extensions to a new edge or
vertex from a single vertex of the tree under construction.

Matsui’s algorithm employs that one can construct a spanning tree T of
a graph G by swapping an edge f of another spanning tree T / with an edge
g /∈ T / such that T

⋃
{g} is a cycle (such a cycle is called a fundamental circuit

of G). This property allows us to relate all spanning trees of G in a parent-child
relationship hierarchy from a single baseline spanning tree where a child spanning
tree is the result of replacing a single edge of its parent with another edge, called
the pivot edge. The algorithm traverses the hierarchical domain of spanning
trees by finding pivot edges using a generic enumeration algorithm proposed by
Nagamochi and Ibaraki [11]. The domain traversal order can be breadth-first or
depth-first. However, careful edge ordering is essential to avoid returning to an
ancestor-spanning tree from a descendent. Then pivot edges discovery from a
single spanning tree can take O(n) time. That gives the total time complexity
O(n+m+nτ). Both Gabow and Myer [5] and Matsui’s algorithm only maintains
a single spanning tree and a sorted sequence of edges in memory. Therefore, their
space complexity is O(n+m). One can view these algorithms as optimizations
to Read and Tarjan’s generic backtracking-based algorithm for listing specific
types of subgraphs of a graph [15], which provides O(n + m + mτ) time and
O(n+m) space bounds for listing spanning trees.

Onete et al.’s [13] more recent algorithm of spanning tree enumeration achieves
the same time and space bounds as Matsui’s algorithm. However, the algorithm
is quite different and involves no backtracking. Onete et al. found that all and
only non-singular submatrices with a specific structure of a reduced incidence
matrix of a graph represent spanning trees. Their algorithm utilizes this finding
by generating unique submatrices of that kind and spewing corresponding span-
ning trees in the incidence matrix format. Since checking for non-singularity is a
linear process in the number of vertices, the time complexity of their algorithm
is also O(n+m+ nτ).

Kapoor and Ramesh [8] and Shioura and Tamura [16] provide two alternative
algorithms to improve the time complexity from O(n+m+nτ) to O(n+m+ τ)
when the individual spanning trees need not be output. Instead, their difference
from a baseline tree as a list of edge exchanges is sufficient. Both algorithms
implicitly traverse the network S(G) formed by all spanning trees of G where the
nodes of S(G) are the spanning trees of G and there is an edge between two nodes
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Fig. 1: A plane 3-tree of 5 vertices, G5

of S(G) if the corresponding trees differ by an edge exchange. Both algorithms
maintain a dynamic, ordered list of edges associated with fundamental cycles of
G in a data structure to optimize the traversal of S(G) and avoid duplicate tree
generation. Although the underlying data structures are different in these two
algorithms, their maintenance increases algorithms’ space complexity to O(nm).
Furthermore, recreating the individual spanning trees from the description of
differences sacrifices time optimization.

All the above algorithms involve checking for cycle formation or tracking
cyclic relations among edges of the graph, which is the chief contributor to their
time or space complexity. Avoiding cycle tracking during spanning tree enumer-
ation of a general graph is challenging. However, alternative approaches that
utilize a graph’s structure to enumerate spanning trees without cycle tracking
can lead to better algorithms for specific graph classes.

In this paper, we consider the problem of enumerating spanning trees of a
plane 3-tree. Plane 3-trees are a class of planner graphs formed from repeated
triangulation of phases of an initial triangle. Formally, a plane 3-tree Gn is a
triangulated plane graph G with n ≥ 3 vertices such that if n > 3 then G has a
vertex x whose deletion gives a plane 3-tree G′ of n− 1 vertices. Figure 1 shows
an example of plane 3-tree G5 containing 5 vertices. Our approach uses the face
decomposition structure of a plane 3-tree to order its vertices, then inductively
generates all its spanning trees without duplication from that vertex order. The
algorithm using breadth-first propagation of inductive expansion has O(n+m+
τ) time and O(nτ) space complexities. When space is not an issue, this algorithm
has the advantage of being easily parallelizable. Our second algorithm captures
the logic of inductive expansion into a tree alteration scheme like Matsui’s to
output all spanning trees using dynamic programming (DP) in O(n) space and
O(n+m+ τ) time.

The structure of the rest of the paper is as follows. Section 2 presents prelim-
inaries on various terms and concepts related to graphs, plane 3-trees, and our
algorithms. Section 3 introduces some lemmas and theorems related to properties
of spanning trees of a plane 3-tree. Section 4 presents our first and inductive al-
gorithm for spanning tree enumeration. Section 5 describes and analyzes the DP
algorithm. The paper concludes with a discussion of future research directions.

2 Preliminaries

In this section, we define some terms we will use for the rest of the paper and
present some preliminary findings.
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Let G = (V,E) is a connected simple graph with vertex set V and edge set
E. A subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
G′ is a spanning subgraph of G when V ′ = V . G′ is an induced subgraph of G
when G′ contains all edges of E having both endpoints in V ′. When each edge
(u, v) ∈ E is directional, i.e., (u, v) ̸= (v, u) then G is a directed graph; otherwise,
G is undirected. In this paper, we only consider undirected graphs. The degree
of a vertex v ∈ G, denoted by degree(v), is the number of edges incident to it.
The neighbors of v are the vertices that share an edge with v. That is, if there is
an edge (u, v) ∈ E then u and v are neighbors. We also say u and v are adjacent
in G.

A tree T = (V,E) is a connected graph with no cycles. T is rooted when
one vertex r ∈ V is distinguished, called the root, from others. A spanning
tree of a graph G is a spanning subgraph that is a tree. We use the term
node and vertex interchangeably to refer to a vertex of a spanning tree. The
unique path between two nodes u,w in T is the sequence of edges of the form
(u, v1), (v1, v2), · · · , (vi, w) that connects u and w in the tree. We use the no-
tations ρu,v1,··· ,w or ρu,w interchangeably to denote the path between u and w.
The length of a path is the number of edges in it. Let T be a rooted tree with
root node r. The parent u of any node v other than r in T is the immediate
predecessor of v on the path from r to v. Conversely, v is a child of u. A leaf of
T is a node with no children; otherwise, it is an internal node. A sub-tree T ′ of
T is an induced proper subgraph of T . A node w is an ancestor of another node
v in T when the unique path from v to the root r contains w; conversely, v is a
descendent of w. A fundamental cycle of a graph G is a cycle formed by adding
a non-tree edge (u, v) ∈ G on its spanning tree

A graph G is planar if one can embed it on a plane without any edge crossing.
We call such an embedding a plane embedding of G. A plane graph is a planar
graph with a fixed embedding, where the connected regions of a plane embedding
are its faces. The unbounded region is the outer face, and all others are the inner
faces. The vertices of the outer face are the outer vertices, while the rest are
inner vertices. A plane graph G is a triangulated plane graph when every face
has precisely three vertices.

A plane 3-tree is a triangulated plane graph whose plane embedding is a re-
peated triangulation of the faces starting from a single outer triangle. Therefore,
a plane 3-tree Gn is a triangulated plane graph G with n ≥ 3 vertices such that
if n > 3 then G has a vertex x whose deletion gives a plane 3-tree Gn−1 of
n− 1 vertices. We call x the last, or (n− 3)th, dividing vertex of Gn. Note that
degree(x) = 3. We call the three neighbors u, v, w of x, the face vertices of x in
Gn and denotes their set by ζx. If n > 4 then the last dividing vertex y of Gn−1

is the (n − 4)th dividing vertex of Gn. Here n − 3 and n − 4 are the dividing
orders of x and y respectively. Our notion of a dividing vertex is similar to that
of a representative vertex described in [12].

Fact 1. One can describe the repeated triangulation-based embedding of a plane
3-tree Gn of n > 3 vertices unambiguously by an ascending sequence of dividing
vertices v1, v2, · · · , vn−3 and their face vertex sets ζv1 , ζv2 , · · · ., ζvn−3

.
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Note that multiple sequences of dividing vertices exist for a plane 3-tree Gn

when it has multiple degree-3 vertices. However, all such sequences describe the
same plane embedding. For a dividing vertex sequence ds = v1, v2, · · · , vn−3

of a plane 3-tree Gn with n > 3, we use Gim
1 , Gim

2 , · · · , Gim
n−3 to represent the

sequence of intermediate plane-3 trees we get by introducing the dividing vertices
in corresponding order starting from G3 (note that Gim

n−3 = Gn). We use the
notation δ(v, ds) to represent the dividing order of vertex v in ds.

Fact 2. If w is the last dividing vertex among three vertices u, v, w appearing
in any dividing vertex sequence of a plane 3-tree Gn of n ≥ 3 and u and v are
adjacent to w then u and v are also mutually adjacent.

Proof. Assume that the dividing order of w is i for i ≤ n − 3. Since repeated
triangulation of faces forms Gn, the ith dividing vertex w can only have its face
vertices ζw as neighbors when we introduce it in Gim

i . As u and v preceded w
in the dividing vertex sequence (or did not appear in the sequence due to being
an outer face vertex), u, v ∈ Gim

i , which implies u, v ∈ ζw. That is, u and v were
part of the same triangular face in an intermediate graph of Gn. Therefore, u
and v are adjacent.

We next define some operations on trees that are essential for describing
our algorithms. Edge extension is the operation of adding a new leaf node to
a tree. The reverse operation of edge extension is edge removal which delete a
leaf and its incident edge. The operation of adding a new vertex of degree 2 in
the edge between two tree nodes is edge subdivision, and the reverse operation
is path contraction which removes a node of degree two and connects its two
neighbors by an edge. Finally, replacing a path of length two in a tree with a
new node connected to all three nodes of the path is root extension, and the
reverse operation is root flattening. Figure 2 illustrates these operations.

1

2 3 4

5 6 7 8 9 10

11 12 13 14 15

(a) Edge Extension

1

2 3 4

5 6 7 8 9 10

11 12 13 14 15

(b) Edge Subdivision
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11 12 13 14 15

(c) Root Extension

1

2 3 4
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11 12 13 14 15

(d) Edge Removal
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2 3 4
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11 12 13 14 15

(e) Path Contraction

1
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11 12 13 14 15

(f) Root Flattening

Fig. 2: Tree operations
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3 On Spanning Trees of a Plane 3-Tree

In this section, we prove some properties of the spanning trees of a plane 3-tree.
In subsequent sections, we will use these properties to prove the correctness of
our tree enumeration algorithms.

Lemma 1. Any spanning tree Tn of a plane 3-tree Gn with n > 3 results from
consecutive applications of edge extension, edge subdivision, and root extension
starting from a path of length two connecting the outer vertices of Gn.

Proof. We prove the property by backtracking from Tn to a path of length two,
T0, connecting the outer vertices of Gn by applying the reverse operations of edge
extension, edge subdivision, and root extension. Being able to do so implies that
we can apply these three operations in the exact reverse order to construct Tn

starting from T0.
Assume ds = v1, v2, · · · , vn−3 and fs = ζv1 , ζv2 , · · · ., ζvn−3

are a dividing
vertex sequence and corresponding face vertex set sequence describing the em-
bedding of Gn. Since vn−3 is the last dividing vertex in ds, degree(vn−3) = 3
and the node in Tn correspond to vn−3 can be adjacent to only one, two, or three
other nodes from ζvn−3

.
In case node vn−3 is adjacent to only a single node x ∈ ζvn−3

in Tn. Then
vn−3 is a leaf. Therefore, we can apply an edge removal on Tn to remove vn−3

and the associated edge (x, vn−3) to get a spanning tree Tn−1 for Gim
n−4.

Alternatively, assume node vn−3 is adjacent to exactly two nodes x, y ∈ ζvn−3

in Tn. If we apply path contraction to remove edges (x, vn−3), (vn−3, y) and add
(x, y). Then the new tree T ′

n−1 after this modification is also a spanning tree of
Gim

n−4. This is true because vertices x, y are adjacent in both Gn and Gim
n−4 (refer

to Fact 2).
Finally, if node vn−3 is adjacent to all x, y, z ∈ ζvn−3 in Tn, we apply root

flattening to remove vn−3 and its incident edges and connect x, y, z using two
new edges (x, y), (y, z). This change again produces a spanning tree T ′′

n−1 for
Gim

n−4 as x, y, z are adjacent in Gim
n−4.

Suppose Tn−1 is the tree we get after removing the node for vn−3 and its
incident edges from Tn. As Tn−1 is a spanning tree of another plane 3-tree Gim

n−4

with n − 1 vertices, we can repeat one of the three tree contraction operations
appropriate for it to remove the node corresponding to vn−4 to get a spanning
tree of Gim

n−5. If we continue this process, eventually, we will remove all dividing
vertices and be left with T0.

A corollary of Lemma 1 is that:

Corollary 1. Any spanning tree Tn of a plane 3-tree Gn with n > 3 is an edge
extension, edge subdivision, or root extension of a spanning tree of another plane
3-tree Gn−1.

Lemma 1 and its corollary provide a convenient way to generate spanning
trees of larger plane 3-trees from that of smaller plane 3-trees. However, we
need to know when edge extension, edge subdivision, and root extension create
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duplicate trees and when they do not. The following lemmas guide us in that
regard. For the sake of notational brevity, we now use Gn−1 to represent Gim

v−4

of the larger plane 3-tree Gn. That is, Gn−1 is the plane 3-tree that results from
removing the last dividing vertex of Gn and its incident edges.

Lemma 2. If two spanning trees T 1
n−1 and T 2

n−1 of Gn−1 are distinct, then an
edge extension or edge subdivision to them to add a node for the last dividing
vertex v of Gn will always produce two distinct spanning trees T 1

n and T 2
n of Gn.

Lemma 2 is trivially true due to the precondition of distinctness of the span-
ning trees of Gn−1. We now have lemma 3.

Lemma 3. If ζv = {x, y, z} is the face vertex set of the last dividing vertex v of
Gn and T 1

n , T
2
n are two spanning trees of Gn constructed through a root extension

from two spanning trees T 1
n−1 and T 2

n−1 of Gn−1 then T 1
n and T 2

n are distinct
if and only if at least one of the three sub-trees rooted under nodes x, y, z are
different in T 1

n−1 and T 2
n−1.

Proof. Note that root extension is possible only when x, y, z form a path ρx,y,z,
ρx,z,y or ρy,x,z in T 1

n−1, T
2
n−1. The three sub-trees rooted under x, y, z exclude

that path. Assume the sub-trees are T 1
n−1(x), T

1
n−1(y), T

1
n−1(z) in T 1

n−1 and
T 2
n−1(x), T

2
n−1(y), T

2
n−1(z) in T 2

n−1. If any of these sub-trees are pairwise different
(i.e., T 1

n−1(i) ̸= T 2
n−1(i) ∃i ∈ ζv), the root extension operation will retain the

difference in T 1
n and T 2

n as it does not exchange or change sub-trees. On the other
hand, if they are pairwise the same sub-trees (i.e., T 1

n−1(i) = T 2
n−1(i) ∀i ∈ ζv),

still T 1
n−1 and T 1

n−2 can be different due to the difference in the path connecting
x, y, z. However, root extension removes the path among the three face vertices
and connects them via edges to the node for the dividing vertex. Consequently,
T 1
n , T

2
n cannot be distinct without some difference in the sub-trees rooted under

x, y, z in T 1
n−1 and T 2

n−1. (Figure 3 illustrates this case with an example.)

Lemma 2 and 3 give us insights on how to inductively generate spanning
trees of a plane 3-tree without duplication from spanning trees of smaller graphs
using a single sequence of dividing vertices. However, edge extension is the only
universal operation we can apply to all smaller sub-trees. Edge subdivision or
root extension is only possible when the structure of the smaller sub-tree permits
it. Note that we worry about this issue despite Lemma 1 showing that any
spanning tree of a plane 3-tree is a result of consecutive applications of these
three operations because there can be multiple sequences of dividing vertices for
a single plane 3-tree. Therefore, using one sequence may allow edge subdivision
or root extension at a specific case, while another does not.

Assume τn−1 = {T 1
n−1, T

2
n−1, · · · , TN

n−1} is the set of all spanning trees of
Gn−1. Consider any arbitrary T i

n−1 that has no pair of nodes from the face
vertex set ζv = {x, y, z} of the last dividing vertex v of Gn connected by an edge
in the tree. We can construct a spanning tree Tn for Gn from T i

n−1 where node
v is adjacent to two nodes corresponding to its face vertices using the following
steps:
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Fig. 3: An illustration of a root extension generating the same spanning tree (c)
from two different smaller spanning trees (a) and (b) when the sub-trees rooted
under the involved nodes are identical.

1. First, add v by an edge extension.
2. Then connect leaf v with another face vertex node by an edge to form a

fundamental cycle.
3. Then remove any one edge from that cycle other than the two edges incident

to v.

To produce a Tn where v shares an edge with all of x, y, z, we can repeat the
above process for the remaining face vertex. One can convince thyself that this
alternative process generates all spanning trees [9] [16]. The vital concern here is
that we can generate spanning trees describable using edge subdivisions and root
extensions that we did not generate using those operations in the first place. Let
us call this alternative approach of spanning tree generation cycle breaking. The
following two lemmas prove that a spanning tree generated using cycle breaking
is always a replica of another tree inductively generated using edge subdivision
or root extension following a single dividing vertex sequence.

Lemma 4. Assume τn−1 = {T 1
n−1, T

2
n−1, · · · , TN

n−1} is the set of all spanning
trees of Gn−1 and T i

n−1 ∈ τn−1 has no edge (u, v) such that u, v are two face
vertices of the last dividing vertex x of Gn. If Tn having x adjacent to both u
and v is a spanning tree generated from T i

n−1 using cycle breaking then there is

another tree T j
n−1 ∈ τn−1 that we can convert to Tn applying an edge subdivision.

Proof. Since u and v are not adjacent in T i
n−1, there must be a path ρu,··· ,v of

length greater than two in between them. Assume (p, q) is the edge we remove
to break the cycle that forms when we add edges (u, x) and (x, v) to T i

n−1.
Figure 4(a) and 4(b) illustrate this conversion. Given u and v are adjacent in
Gn−1, we can subsequently do a path contraction to form another spanning tree
Tn−1 of Gn−1 which has the edge (u, v). Figure 4(c) and 4(d) illustrate this
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u p q v

(a) T i
n−1

u
p q

v

x

(b) Tn

x

u

p q

v

(c) Tn

u

p q

v

(d) T j
n−1

Fig. 4: Completeness of edge subdivision

conversion from T i
n to Tn−1. Since τn−1 contains all spanning trees of Gn−1, this

new Tn−1 = T j
n−1 for some 1 ≤ j ≤ N and j ̸= i. We would get the same Tn by

applying an edge subdivision on T j
n−1.

Lemma 5. Assume τn−1 = {T 1
n−1, T

2
n−1, · · · , TN

n−1} is the set of spanning trees
of Gn−1 and T i

n−1 ∈ τn−1 does not have a pair of edges (x, y), (y, z) where x, y, z
are the face vertices of the last dividing vertex v of Gn. If Tn having (v, x), (v, y)
and (v, z) edges is a spanning tree generated from T i

n−1 using cycle breaking

then there is another tree T j
n−1 ∈ τn−1 that we can convert to Tn applying a root

extension.

Proof. First assume T i
n−1 has one of the three edges (x, y), (y, z), (z, x) and that

edge is (x, y). Then introducing (u, x) and (u, y) edges creates a fundamental
cycle in Tn with (x, y). Cycle breaking must remove the edge (x, y) to keep u
adjacent to both x and y. Then according to Lemma 4, cycle breaking to make
v adjacent to both y and z in Tn is equivalent to an edge subdivision on another
tree Tn−1 ∈ τn−1 that has the edge (y, z). We can pick such a Tn−1 from τn−1 so
that it retains the edge (x, y). We have the choice because the alternative path
between z and y has at least three edges due to the absence of the edge (z, x) in
T i
n−1, which allows us to avoid removing edge (x, y) even if it happens to be a

part of the second, larger fundamental cycle. Therefore, we get a 1 ≤ j ≤ N for
which T j

n−1 has the pair of edges (x, y), (y, z) and applying a root extension to

T j
n−1 will generate Tn.
In case T i

n−1 has none of the three edges (x, y), (y, z), (z, x) then we can
apply Lemma 4 to discover an intermediate tree Tn−1 that has one edge among
the three. Then we can use the same argument we used above to reach a T j

n−1

from Tn−1 and then show that we can generate Tn from T j
n−1 through root

extension.
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Lemma 4 and 5 imply that one can add the last vertex of a dividing vertex
sequence ds = v1, v2, · · · , vn−3 of Gn to inductively generate all spanning trees of
Gn from the spanning trees of Gn−1 using only edge extension, edge subdivision,
and root extension regardless of the dividing order of earlier vertices. However,
if Gn has more than one degree 3 vertices, then the last dividing vertex itself
can be different between two d1s = v11 , v

1
2 , · · · , v1n−3 and d2s = v21 , v

2
2 , · · · , v2n−3

describing Gn. Then Gim
n−4 = Gn−1 for the two sequences differ by at least one

pair of vertices. Consequently, their set of spanning trees τ1n−1 and τ2n−1 has no
common tree, which may cause us to miss some spanning trees if we only use one
of d1s and d2s for tree enumeration. The following lemma eliminates this concern
by showing that the ordering differences of vertices among two dividing vertex
sequences of Gn do not impact spanning tree generation.

Lemma 6. Assume that two dividing vertex sequences d1s = v11 , v
1
2 , · · · , v1n−3

and d2s = v21 , v
2
2 , · · · , v2n−3 of a plane 3-tree Gn start diverting at index k. That

is, the sub-sequences d1sub = v1k, v
1
k+1, · · · , v1n−3 and d2sub = v2k, v

2
k+1, · · · , v2n−3

are different from their beginning. Assume τk−1 is the set of all spanning trees
of Gim

k−1. Then for each tree T1 ∈ τk−1 and a series of edge extension, edge
subdivision, and root extension to T1 in the order of d1sub forming a spanning
tree Tn; there is another tree T2 ∈ τk−1 such that an alternative sequence of
those operations in the order of d2sub generates the same spanning tree of Gn.

Proof. If some part of the tail end of d1sub and d2sub are the same, we can remove
that common part from consideration and prove the lemma for a smaller plane 3-
tree. Therefore, without the loss of generality, assume that u = v1n−3 ̸= v2n−3 = v.
Further, assume G1

n−1 and G2
n−1 are the plane 3-trees of n − 1 vertices arising

from G1
k−1 after adding all but the last dividing vertex from d1sub and d2sub

respectively. Thus, for any pair of spanning trees T 1
n−1 of G1

n−1 and T 2
n−1 of

G2
n−1, u /∈ T 1

n−1 ∋ v and v /∈ T 2
n−1 ∋ u. Note that the condition degree(u) =

degree(v) = 3 holds as both u and v appear as the last dividing vertex in some
dividing vertex sequences.

Consider the generation of Tn from T 1
n−1 by adding u through an edge exten-

sion, edge subdivision, or root extension. Since degree(v) = 3 and v is already
a part of T 1

n−1, v /∈ ζu and and u /∈ ζv. In addition, node v can be adjacent to
at most 3 other nodes in T 1

n−1. Assume T 1
n−2 is the tree we get after removing

v from T 1
n−1 using an appropriate edge removal, path contraction, or root flat-

tening. Then we apply the operation on T 1
n−2 that we would apply to T 1

n−1 to

reach Tn. Let us call the tree that results from adding u one step earlier T 1′

n−1.

T 1′

n−1 is a spanning tree of G2
n−1 as it contains all vertices of Gn except v.

If u is added as an edge extension to T 1
n−1 to form Tn then T 1′

n−1 is the
spanning tree of G2

n−1 where we can repeat the reverse operation of removing
v earlier to generate Tn. The same condition holds if v was connected to T 1

n−1

by an edge extension. If v was connected to T 1
n−1 by an edge subdivision or

root extension and ζv
⋂
ζu = ∅, then again the same condition holds. If v was

adjacent to two vertices x, y ∈ ζv in T 1
n−1 and u was added to T 1′

n−1 using an
edge subdivision, or root extension involving only one of x, y then again the
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same condition holds. On the other hand, the same edge (x, y) cannot undergo
two edge subdivisions or both an edge subdivision and a root extension to form
Tn. Therefore, we covered all cases, and T 1′

n−1 is the spanning tree of G2
n−1 that

can generate the same Tn using an edge extension, edge subdivision, or root
extension.

Since the difference of v’s position in d1sub and d2sub did not affect the final
spanning tree of Gn, we can remove v from both sub-sequences and inductively
apply the same reasoning for the spanning tree of Gn−1 and so on. Therefore,
the reverse sequence of operations we apply to backtrack the vertices of d2sub is
that alternative sequence for generating Tn from Tk−1.

The following corollary elegantly expresses the finding of Lemma 6.

Corollary 2. Any two dividing vertex sequences d1s and d2s of a plane 3-tree Gn

generate the same spanning tree Tn irrespective of their differences if the tree
modification operation for each dividing vertex remains unchanged.

4 Inductive Algorithm for Spanning Tree Enumeration

Lemma 1 to 6 give us all the insights we need to generate all spanning trees of a
plane 3-tree inductively from spanning trees of smaller constituent plane 3-trees.
This section presents and discusses an inductive algorithm for spanning tree
enumeration that we will use as the blueprint for a better dynamic programming
algorithm in the next section.

A general outline of the algorithm: We will take a sequence of dividing
vertices, ds, and corresponding face vertex set sequence, fs, of the plane 3-tree
Gn as inputs to the algorithm. We initiate a list with the spanning trees for G3.
Then we iterate over the dividing vertex sequence. In each iteration, we take
one dividing vertex, v, and apply edge extension to all trees in the list, edge
subdivision to those trees where the operation is permitted, and root extension
to those trees where the face vertices of v form a specific path of length two. We
store the result of these operations in a new list that replaces the old list at the
end of the iteration. When the iterative process completes, the list contains all
spanning trees of Gn without duplication. We use root extension with caution
due to Lemma 3 showing that some sub-trees under the face vertices of a dividing
vertex need to be different to avoid duplicate spanning tree generation. In that
regard, if v is the face vertex under consideration at a particular iteration and
x, y, z are v’s face vertices with δ(x, ds) < δ(y, ds) < δ(z, ds), we apply root
extension for v on a tree only if it has the path ρx,y,z. To use this logic for
the three outer face vertices, we assign them arbitrary but fixed dividing orders
−2,−1 and 0.

Algorithm 1 presents the pseudo-code of the spanning tree enumeration pro-
cess.

The correctness of Algorithm 1 is evident from the various lemmas of Section
3. Hence, we focus on its running time and space requirement analysis. For that,
we first need to understand the cost of generating a dividing vertex sequence and
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Algorithm 1: Inductive Algorithm for Spanning Tree Enumeration

Input: ds, fs - a dividing vertex and face vertex set sequence pair of Gn

Output: τ - the set of all spanning trees of plane 3-tree Gn

{x, y, z} ← fs[0]
τ ← {ρx,y,z, ρy,x,z, ρx,z,y}
for ( i = 0; i < length(ds); i = i+ 1 ) do

ν ← ds[i]
ζ ← fs[i]
[α, β, γ]← sortByDividingOrder(ζ)
τ ′ ← ∅
foreach T ∈ τ do

foreach µ ∈ {α, β, γ} do
τ ′ ← τ ′ ⋃{T ∪ {(µ, ν)}}

end
foreach (µ, ω) ∈ T & {µ, ω} ⊂ ζ do

τ ′ ← τ ′ ⋃{(T − {(µ, ω)}) ∪ {(µ, ν), (ν, ω)}}
end
if ρα,β,γ ∈ T then

τ ′ ← τ ′ ⋃(T − ρα,β,γ) ∪ {(ν, α), (ν, β), (ν, γ)}
end

end
τ ← τ ′

end

modifying a spanning tree of the smaller subgraph to produce one for a larger
graph/subgraph.

Dividing Vertex Sequence Generation: We can generate a ds, fs pair
for a plane 3-tree Gn by using a graph traversal of Gn starting from any vertex
and populating a pair of stacks. Anytime the graph traversal reaches a vertex v
of degree three, we push v in one stack and its neighbor set to the other. Then
we remove v and its incident edges from the graph and continue the traversal.
The traversal ends when we find a vertex with degree two. Then we generate the
ds, fs pair by popping one element at a time from both stacks and appending
the elements in the growing list of dividing vertex and face vertex set sequences.
The whole process requires a single traversal of Gn that would take O(n +m)
time where m is the number of edges in Gn and O(n+3n) = O(n) space beyond
the initial storage for the input graph Gn.

Data Structure for Spanning Trees: We can represent the spanning trees
using a simple array of n − 1 vertices where the entry at ith index is the other
endpoint of an edge incident to the vertex with dividing order i − 1. We adopt
the following approach of modifying a spanning tree for Gim

j−1 to form a spanning

tree for Gim
j to ensure that each entry in the array refers to a distinct edge.

1. If we add the new vertex v with δ(v, ds) = j to the spanning tree using an
edge extension from existing vertex x then we enter δ(x, ds) at index (j+1).
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2. If we add v subdividing the edge (x, y) then we investigate index δ(x, ds)+1
and δ(y, ds) + 1 to determine which entry refers to the edge (x, y), replace
the current value with j in that entry, and then write the dividing order of
the other entry at index (j + 1).

3. Finally, if we use root extension to x, y, z to add v in the spanning tree, then
we modify two existing entries using the approach of (2) and add a new entry
for the remaining vertex at index (j + 1).

Note that the above approach works even when one of the face vertices of v
is the first outer face vertex, which has no entry in the array.

We now prove the following theorem of Algorithm 1 and time complexities.

Theorem 1. Assuming replicating a fixed-size array in memory is a constant
time operation, Algorithm 1 enumerates all spanning trees of a plane 3-tree Gn

of n vertices, m edges, and τ spanning trees in O(n +m + τ) time and O(nτ)
space.

Proof. Assuming memory replication of a fixed-length array is a constant time
operation, and the storage structure of a spanning tree is as we described above;
generating a new spanning tree T ′ for Gim

i+1 from a spanning tree T of Gim
i is a

constant time operation. Furthermore, evaluating whether an edge subdivision
or root extension is admissible in T also takes a constant time (we can investigate
the three indexes for the face vertices of the current vertex in T to determine
their adjacency). In addition, the algorithm investigates each T exactly once
and generates at least three new trees. Therefore, the algorithm’s running time
is proportional to the number of spanning trees generated through the iterative
process.

If τi+1 represents the number of spanning trees of Gim
i+1 then τi ≤ τi+1

3 for
all i < n. Thus, the total number of trees the algorithm generates is ≤ τ + τ

3 +
τ
32 + · · ·+ τ

3n = τ(3n+1−1)
2×3n < 2τ , where τ is the number of spanning trees of Gn.

Thus, the algorithm’s running time is O(τ). After adding the computation time
for generating a dividing vertex and its face vertex set sequences, the overall
time complexity of enumerating the spanning trees of an input plane 3-tree Gn

becomes O(n +m + τ), where m is the number of edges in Gn. The algorithm
only retains the two input sequences and the set of spanning trees of the current
plane 3-tree. Therefore, the space complexity is O(n+ nτ) = O(nτ).

Suppose we relax the assumption that memory replication of a fixed-length
array is a constant time operation. If an array copy takes time linear to the num-
ber of elements in the array, then constructing each spanning tree takes O(n)
time. Then the running time of Algorithm 1 becomes O(n +m + nτ), which is
equivalent to the best-known algorithm for spanning tree enumeration in a gen-
eral graph. In the next section, we will use dynamic programming to convert the
inductive tree generation process into a tree alternation process that avoids ar-
ray copying and reduces the space required to O(n). However, one should notice
that Algorithm 1 involves no coordination among the elements of the spanning
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tree set in each iteration. That makes it perfectly parallelizable. After the gen-
eration of the two input sequences and a few iterations of smaller spanning tree
generation; different parallel processors can independently continue the induc-
tive process from the initial spanning tree set. That gives the time complexity
of O(n + m + nτ

p ) for p-processor parallel version of the algorithm. The space
requirement in individual processors is nτ

p . Thus the following theorem holds.

Theorem 2. Assuming copying a fixed-size array is a linear time operation to
the size of an array, a p-processor parallel version of Algorithm 1 enumerates all
spanning trees of a plane 3-tree Gn of n vertices, m edges, and τ spanning trees
in O(n+m+ nτ

p ) time and O(nτp ) space.

5 DP Algorithm for Spanning Tree Enumeration

Algorithm 1 of the previous section is close to optimal because it involves no
duplicate spanning tree generation and churns out new spanning trees in con-
stant time from other intermediate spanning trees. However, it must keep all the
intermediate spanning trees of the immediately previous step in memory and
involves a tree copying overhead during a new spanning tree generation.

We can eliminate both limitations by converting the inductive tree-generation
process into a recursive tree mutation process. Note that if τ is the set of all
spanning trees of the plane 3-tree Gn, one can view each spanning tree T ∈ τ
as a unique configuration of edge extension, edge subdivision and root extension
operations. Furthermore, for all T ∈ τ , these operations are applied on a path of
length two connecting the outer face vertices in the same order vertices appear
in a dividing vertex sequence. Consequently, we can consider successive trees
added in τ as migration from one configuration to the next. A scheme that
can alter between configurations in constant time, traverse all configurations,
and only emit unique configurations should emulate Algorithm 1. We only need
to maintain a single spanning tree corresponding to the current configuration
when traversing the domain of all spanning tree configurations. Suppose we
can apply a clever trick of using the list of edges of the current spanning tree
as the representation of the underlying configuration. In that case, there is no
additional space overhead beyond that of a single spanning tree and two lists for
the dividing vertex and face vertex set sequences. That is the logic of our DP
algorithm in this section.

First, we need an initial configuration for the described scheme to work. As-
sume a, b, and c are the outer face vertices with our assigned respective dividing
orders −2,−1, and 0. Then the initial configuration has the path ρa,b,c and for
each dividing vertex x in the sequence ds the edge (w, x) such that w ∈ ζx and
δ(w, ds) is the largest for all of x’s face vertices. Figure 5(a) and (b) illustrate a
plane 3-tree and its spanning tree for the initial configuration.

If ζx = {u, v, w}, then alternative configurations for x are to have edge ex-
tension from u or v, subdividing edges (u, v), (v, w) or (u,w), and root extending
the path ρu,v,w. Among them, the admissibility of edge subdivision or root ex-
tension depends on the current configuration for u, v, and w. Let us call moving
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to any alternative configuration for x from its default configuration in any tree
T a mutation and number the mutations in the order we specified from zero to
five. Then we can define the following functions.

mutateTree(T, v, ζv, i) =

{
T ′ mutation i can be applied to T for v to create T ′

∅ otherwise

(1)

reverseMutation(T ′, v, ζv, i) =

{
T T ′ is the result of applying mutation i for v to T

T ′ otherwise

(2)
If we use the data structure described in Section 4 for the spanning trees,

then both mutateTree and reverseMutation functions should take constant
time. Both require a constant number of index checking and entry updates in
the list of edges sorted by the dividing order of vertices.

To permit configuration changes for the initial path connecting the outer
face vertices, we only need to support an alternative edge extension and an
edge subdivision for the outer vertex with order zero as an exceptional case.
Finally, note that the mutateTree function updates the argument tree T when
the mutation is admissible; otherwise, it leaves T unchanged. Now we can define
our DP algorithm for spanning tree enumeration of a plane 3-tree, as illustrated
in Algorithm 2.

Now we prove the following theorem on the correctness and time and space
complexities of Algorithm 2.

Theorem 3. Algorithm 2 enumerates all spanning trees of a plane 3-tree Gn

with n vertices, m edges, and τ spanning trees without duplication in O(n+m+τ)
time and O(n) space.

Proof. Algorithm 2 first generates a spanning tree of Gn for the initial configu-
ration, updates the dividing vertex and face vertex set sequences to include one
outer face vertex, and then invokes the function generateSpanningTrees that
implements the DP algorithm. Therefore, it suffices that we only analyze the
generateSpanningTrees function for the correctness and complexity of the DP
scheme.

b c
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(b) The baseline spanning tree

Fig. 5: An example plane 3-tree and its baseline spanning tree
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Algorithm 2: DP Algorithm for Spanning Tree Enumeration

Input: ds, fs - a dividing vertex and face vertex set sequence pair of Gn

Output: τ - the set of all spanning trees of plane 3-tree Gn

ζ0 ← fs[0]
[α0, β0, γ0]← sortByDividingOrder(ζ0)
T ← []
T [0]← δ(α0, ds)
T [1]← δ(β0, ds)
for ( i = 0; i < length(ds); i = i+ 1 ) do

ζ ← fs[i]
[α, β, γ]← sortByDividingOrder(ζ)
T [i+ 2]← δ(γ, ds)

end
ds ← [γ0].append(ds)
fs ← [{α0, β0}].append(fs)
generateSpanningTrees(ds, fs, 0, T )

Function generateSpanningTrees(ds, fs: List, i: Integer, T : Array) is
if i == length(ds) then

output(T )
else

ν ← ds[i]
ζ ← fs[i]
for ( mi = 0; mi ≤ 5; mi = mi + 1 ) do

T ′ ← mutateTree(T, ν, ζ,mi)
if T ′ ̸= ∅ then

generateSpanningTrees(ds, fs, i+ 1, T ′)
T ← reverseMutation(T ′, ν, ζ,mi)

end
generateSpanningTrees(ds, fs, i+ 1, T )

end

end

Each time generateSpanningTrees output a spanning tree, it is for a dif-
ferent configuration of mutations of vertices from ds. Hence, the algorithm only
outputs distinct spanning trees of Gn. The function removes mutation in the
reverse order it applies them. Therefore, a mutation of any vertex is reversible
during a backtracking step if it was admissible during the recursive unfolding.
The only question is whether or not generateSpanningTrees accommodates
all possible mutations of each vertex. The answer lies in the choice of default
configuration for dividing vertices.

Assume that u is the vertex with dividing order i. Anytime generateSpanningTrees
tries to apply a mutation for u from its default configuration, all vertices v with
δ(v, ds) > δ(u, ds) are attached via an edge extension to their respective face
vertex with the highest dividing order. The critical characteristic of edge exten-
sion from a vertex x to y where δ(x, ds) < δ(y, ds) is that it does not preclude
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Fig. 6: Possible mutations of vertex d from the baseline tree of Fig 5(b)

any mutation of x involving vertices with lower dividing orders. Figure 6 illus-
trates this fact for vertex d of the plane 3-tree of Figure 5(a) (Notice that one
mutation for d, i.e., subdividing the edge (a, c) is not admissible from the initial
configuration as that requires a mutation of c.). Consequently, admissible muta-
tions for u depend only on the current configuration of vertices that appeared
earlier in ds. Therefore, applying a mutation or skipping all mutations for u and
then progressing to the next vertex in Algorithm 2 is equivalent to generating all
possible spanning trees of Gim

i from a fixed spanning tree of Gim
i−1 in Algorithm

1. Thus, Algorithm 2 is behaviorally equivalent to Algorithm 1 and correctly
enumerates all spanning trees of Gn without duplication.

Algorithm 2 only maintains a single spanning tree ofGn and two sequences for
dividing vertices and their face vertex sets. Hence, we can derive from the analysis
of Algorithm 1 that Algorithm 2’s time complexity is O(τ) and space complexity
is O(n). Combining that with the initial cost of generating the dividing vertex
and face vertex set sequences, the overall cost of spanning tree enumeration of
a plane 3-tree Gn using dynamic programming is O(n + m + τ) in time and
O(n) in space, where m is the number of edges and τ is the number of spanning
trees.

6 Conclusions

In this paper, we propose an algorithm for enumerating all spanning trees of a
plane 3-tree Gn of n vertices, m edges, and τ spanning trees in O(n + m + τ)
time and O(n) space. Our algorithm substantially improves both time and space
bounds of the best general-purpose spanning tree enumeration algorithm that
takes O(n + m + nτ) time and O(nm) space for this specific graph class. The
central idea underlying this improvement is identifying a few low-cost exten-
sion/mutation operations that we can inductively use to extend spanning trees
of smaller induced subgraphs of a plane 3-three to that of larger subgraphs. In
our case, there are only three such constant time operations. We proved that
these operations could generate all spanning trees of a plane 3-tree and their
application avoids duplicate tree generation.

There are several avenues for future research from our current findings. First,
one can investigate the possibility of a similar spanning tree enumeration tech-
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nique for other graph classes, such as regular graphs with small vertex degrees.
Second, one can try to relate our tree extension/mutation operations with edit
distance computation for pair of spanning trees of a plane 3-tree or prove prop-
erties related to spanning trees. The most exciting future research direction is to
prove that if a set of fundamental operations exist that can express any spanning
tree of a graph, then all their applicable permutations on a sorted sequence of
that graph’s vertices enumerate all spanning trees. If that assumption is correct,
our specific spanning tree enumeration algorithm for plane 3-tree will general-
ize. Then the problem of efficient spanning tree enumeration will become the
problem of finding such fundamental operations for different graph classes.
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