

ETMM11 - ERCOFTAC SYMPOSIUM

11th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements

21-23 September 2016 - Palermo

Conference Program

Produced: 19 Sep, 2016

Overview Programme

		Wednes	sday, 21 September			
Time/Day	Registration/ Support Desk hours (08:00 - 13:00 & 14:00 - 17:00)					
08:45-09:00		Welco	me and Orientation			
09:00-09:45			nited States Naval Academy a surface topography and frie	·		
09:45-10:30	Vladimir Nikora (University of Aberdeen) Turbulence in open-channel flows: recent advances and implications for sediment transport, hydraulic resistance and flow-biota interactions					
10:30-11:00			Coffee Break			
11:00-12:40	Hybrid RANS-LES	Particle-laden flow 1	Combustion 1	Wall-bounded flow 1		
12:40-14:00			Lunch			
14:00-15:40	Wall-bounded flow 2	Particle-laden flow 2	Combustion 2	Experimental fluid mechanics 1		
15:40-16:10	Coffee Break					
16:10-17:50	DNS for LES Jet flows Experimental fluid mechanics 2 Compressible flow					
19:00-20:30	Welcome Reception Room: Palazzo Sterri (University of Palermo)					

	Thursday, 22 September Registration/ Support Desk hours (08:30 - 13:00 & 14:00 - 17:00)					
Time/Day						
09:00-09:45	Understand	Simone ing the structure and dynami	Hochgreb (Cambridge) cs of turbulent reacting flows	s via selective experiments		
09:45-10:30	Alfredo Pinelli (City University of London) Flow manipulation based on passive and localised fluid structure interactions					
10:30-11:00			Coffee Break			
11:00-12:40	Flames 1	Manipulated turbulence 1	High fidelity methods 1	Heat Transfer 1		
12:40-14:00			Lunch			
14:00-15:40	Heat transfer 2	Flames 2	Manipulated turbulence 2	High-fidelity methods 2		
15:40-16:10	Coffee Break					
16:10-17:50	Turbulence Fundamentals Bluff body flow Phase transition Turbulence-reaction modeling					
19:00-22:00	Conference Dinner Place: Villa Niscemi					

	Friday, 23 September				
Time/Day	Registration/ Support Desk hours (08:30 - 13:00)				
09:00-09:45	Sutanu Sarkar (UCSD) Turbulence at rough topography in the deep ocean				
09:45-10:30	Detlef Lohse (University of Twente) Turbulent Rayleigh-Benard and Taylor-Couette flow				
10:30-11:00			Coffee Break		
11:00-12:40	Transition Turbulence models LES 1 Noise and acoustics				
12:40-14:00	Lunch				
14:00-15:40	EUROTURBO LES 2 Friction and drag Separated flow				
15:40-16:00		Closing addr	ess - Announcing ETMM12		

Wednesday, 21 September

08:45-09:00	Welcome and Orientation Chair: Bernard Geurts Room: Normanni					
09:00-09:45	Karen Flack (United States Naval Academy) The relationship between surface topography and frictional drag Chair: Bernard Geurts / Room: Normanni					
09:45-10:30	Vladimir Nikora (University of Aberdeen) To	urbulence in open-channel flows: recent advanc Chair: Tullio Tucciare	es and implications for sediment transport, hyd Ili Room: Normanni	draulic resistance and flow-biota interactions		
10:30-11:00		Coffee	Break			
	Room: Normanni	Room: Ruggero	Room: Angelica	Room: Basile		
11:00-12:40	Hybrid RANS-LES Chair: Helfried Steiner	Particle-laden flow 1 Chair: Maria Vittoria Salvetti	Combustion 1 Chair: Epaminondas Mastorakos	Wall-bounded flow 1 Chair: Philippe Spalart		
11:00	Advanced Hybrid RANS-LES Simulations of Supersonic Flow over a Shallow Cavity with Leading-edge Serration Kunyu Luo, Zhixiang Xiao	Large eddy simulation of particle-particle interactions in turbulent flow: collision, agglomeration and break-up events Derrick Njobuenwu, Michael Fairweather	Effect of gas phase reactions on biomass pyrolysis and combustion in a turbulent channel flow Abhijay Awasthi, J. G. M. Kuerten, B. J. Geurts	Large-eddy simulation of wall-bounded high- Reynolds numbers flows. Matteo Montecchia, Geert Brethouwer, Arne V. Johansson, Stefan Wallin		
11:20	Evaluation of Grey Area Mitigation Tools within Zonal and Non-Zonal RANS-LES Approaches in Flows with Pressure Induced Separation Dieter Schwamborn, Axel Probst, Andre Garbaruk, Ekaterina Guseva, Misha Shur, Mikhail Strelets, Andrey Travin	DNS study of fusion reactor dust particle mobilization induced by a transonic jet into a vacuum container Gabriele Camerlengo, Domenico Borello, Jörn Sesterhenn, Alessandro Salvagni	Turbulent Scalar Fluxes in Detailed Chemistry Based Premixed Flame DNS Simulations of H2-air Flames in Different Regimes of Combustion Markus Klein, Christian Kasten, Nilanjan Chakraborty, Paul Guillermo Arias, Hong Im	The effects of roughness on the boundary layer development of a circular cylinder Ivette Rodriguez, Oriol Lehmkuhl, Ugo Piomelli, Jorge Chiva, Ricard Borrell, Assensi Oliva		
11:40	On a Modification of the Three-equation k- kL-omega Model for Natural Transition in Adverse Pressure Gradient Flows Jiří Fürst, Jaromír Příhoda	The Influence of Gravity on Particle Collision and Agglomeration in Turbulent Channel Flows Tosanbami Ogholaja, Michael Fairweather, Derrick Njobuenwu	A subgrid scale combustion model based on an explicit expression for the Kolmogorov length scale Katsuhiro Hiraoka, Yoshitsugu Naka, Yuki Minamoto, Masayasu Shimura, Mamoru Tanahashi	The effect of wall normal actuation on a turbulent boundary layer Stefan C. Schlanderer, Nicholas Hutchins, Richard Sandberg		
12:00	Spatio-temporal analysis of transonic wake flow of space launchers via zonal RANS-LES and DMD Vladimir Statnikov, Matthias Meinke, Wolfgang Schröder	The influence of particle concentration on the fluid phase of an axisymmetric multiphase impinging jet John Vickers, Michael Fairweather, David Harbottle	Coupling Reduced-Order Model with LES to Simulate Transverse Combustion Instability in a Multi-injector Combustor Principio Tudisco, Suresh Menon	Interaction of rectangular synthetic jets with a turbulent boundary layer : Influence of the actuation parameters and orientation effect <i>Guillaume Gomit, Tim Berk, Bharathram</i> <i>Ganapathisubramani</i>		
12:20	-	Effect of Four-Way Coupling on the Turbulence Field in Multi-Phase Channel Flows Lee Mortimer, Mike Fairweather, Derrick Njobuenwu	Investigation of autoignition and combustion stability of supercritical carbon dioxide oxy- combustion Benjamin Farcy, Suresh Menon	Scaling of streamwise turbulence intensities of boundary layers approaching separation Artur Dróżdż, Witold Elsner		
12:40-14:00		Lur	nch			

Wednesday, 21 September

	Room: Normanni	Room: Ruggero	Room: Angelica	Room: Basile		
14:00-15:40	Wall-bounded flow 2 Chair: Philipp Schlatter	Particle-laden flow 2 Chair: Detlef Lohse	Combustion 2 Chair: Simone Hochgreb	Experimental fluid mechanics 1 Chair: Stefan Wallin		
14:00	Direct numerical simulation and theory of a wall-bounded flow with zero skin friction Gary N Coleman, Sergio Pirozzoli, Maurizio Quadrio, Philippe Spalart	Simulation of Sediment transport and flow characteristics downstream of a hydraulic structure Donatella Termini	Influence of the turbulent combustion modeling on flame dynamics in a swirled confined non-adiabatic combustor Adrien Chatelier, Renaud Mercier, Thibault Guiberti, Nicolas Bertier, Daniel Durox, Thierry Schuller, Benoit Fiorina	An experimental study of turbulent boundary layer approaching separation Witold Elsner, Artur Dróżdż		
14:20	Influence of a large-eddy-breakup-device on the turbulent interface of boundary layers Cheng Chin, Jason Monty, Andrew Ooi, Ramis Örlü, Philipp Schlatter, Nicholas Hutchins	Direct numerical simulation of sediment transport over irregular sediment bed in an open channel flow Ramandeep Jain, Bernhard Vowinckel, Jochen Fröhlich	The impact of the fine structure reactor formulation in the Eddy Dissipation Concept for MILD combustion modelling Michał Tadeusz Lewandowski, Ivar Ståle Ertesvåg	Extracting Time-Dependent Mass-Flow Rate from a Vortex-Meter Christopher Ford, Henrik Alfredsson		
14:40	Revisiting tripping effects in low-Reynolds number turbulent boundary layers Ramis Örlü, Carlos Sanmiguel Vila, Ricardo Vinuesa, Stefano Discetti, Andrea Ianiro, Philipp Schlatter	Stochastic modeling of cluster-induced turbulence Alessio Innocenti, Sergio Chibbaro, Maria Vittoria Salvetti	Numerical study of combustion and NOx emissions under extreme Miller conditions in a heavy-duty diesel engine with pilot- injections Sushant Sunil Pandurangi, Yuri Martin Wright, Konstantinos Boulouchos	Revisiting Hot-Wire Anemometry Close to Solid Walls Yuta Ikeya, Ramis Örlü, Koji Fukagata, P. H. Alfredsson		
15:00	Assessment of turbulent boundary layers on a NACA4412 wing section at moderate Re Ricardo Vinuesa, Seyed M. Hosseini, Ardeshir Hanifi, Dan S. Henningson, Philipp Schlatter	Performance evaluation of the mesoscale turbulence parameterization schemes for the prediction of dust storms Orkun Temel, Ozgur Karatekin, Jeroen van Beeck, Francesca Esposito	Direct numerical simulation of the flow in the intake pipe of an internal combustion engine Georgios Giannakopoulos, Christos Frouzakis, Paul Fischer, Ananias Tomboulides, Konstantinos Boulouchos	Velocity and Pressure Measurements in a Wire-Wrapped 61-Pin Hexagonal Fuel Bundle Rodolfo Vaghetto, Nolan Goth, Philip Jones, Saya Lee, thien Nguyen, Yassin Hassan		
15:20	Effect of Geometrical Arrangement of Stator Ventilation Channels on Air Flow Losses in a Hydro Generator Model Hamed Jamshidi, Håkan Nilsson	Turbulence in Solid Particle Erosion: A meshless method approach Wiebke Boden, Stephane Aubert, Jean- Christophe Marongiu, Richard Perkins	Modelling of spray flames with Double Conditional Moment Closure Philip Sitte, Epaminondas Mastorakos	Laboratory Experiment on the environment for non-supercell tornado genesis Koji Sassa, Hanaka Watanabe		
15:40-16:10		Coffee Break				

	Room: Normanni	Room: Ruggero	Room: Angelica	Room: Basile
16:10-17:50	DNS for LES	Jet flows	Experimental fluid mechanics 2	Compressible flow
	Chair: Alfredo Pinelli	Chair: Dieter Schwamborn	Chair: Stefan Wallin	Chair: Rinie Akkermans
16:10	Effect of wall curvature on a round subsonic impinging jet: DNS study Alessandro Salvagni, Domenico Borello, Jörn Sesterhenn	Analysis of a dynamic wrinkling model for large eddy simulations of a turbulent premixed jet flame Pedro S. Volpiani, Thomas Schmitt, Denis Veynante	Dynamics of large-scale vortices in non- swirling and swirling jets. Measurements by tomographic PIV Sergey Alekseenko, Sergey Abdurakipov, Vladimir Dulin, Mikhail Tokarev, Dmitriy Markovich	An asymptotic-preserving and semi-implicit pressure-based compressible solver for flows at all Mach numbers Thomas Roger, Vincent Moureau, Ghislain Lartigue
16:30	VLES modelling of flow over walls with variably-shaped roughness by reference to complementary DNS Suad Jakirlic, Benjamin Krumbein, Pourya Forooghi, Bettina Frohnapfel, Franco Magagnato	Turbulent jet simulation using high-order DG methods for aeroacoustics analysis Mathieu Lorteau, Marta de la Llave Plata, Vincent Couaillier	Effective, one-dimensional description of an experimental pulsed detonation combustor Mathias Lemke, J.A.T. Gray, Julius Reiss, J. P. Moeck, Jörn Sesterhenn	Fully compressible channel flow simulations with a fluid close to its vapour-liquid critical point Uttiya Sengupta, Bendiks Jan Boersma, Rene Pecnik
16:50	Direct Numerical Simulation of the Interaction of a Wall-Attached Cube with a Turbulent Boundary Layer Carlos Diaz Daniel, Sylvain Laizet, Christos Vassilicos	Jet impingement onto a heated wall: A VLES study Benjamin Krumbein, Suad Jakirlic, Cameron Tropea	Mixing of Two Gas Streams at High Density Ratios - Experimental and Numerical Study Benedikt Krohn, Medhat Sharabi, Bojan Niceno, Horst-Michael Prasser	A Generalized Phase Average Representation of the Turbulent Wake behind a 2D Flat Plate Robert Martinuzzi, David Wood, Phillip du Plessix, Meraj Mohebi
17:10	High-order numerical study of cellular structures in the inert shocked gases of smoothly perturbed shock fronts Guido Lodato, Luc Vervisch, Paul Clavin	Numerical analysis of the side-jets formation in an externally modulated round jet. Karol Wawrzak, Andrzej Boguslawski, Artur Tyliszczak	-	Turbulence structure in front of a wall- mounted cylinder Wolfgang Schanderl, Ulrich Jenssen, Michael Manhart
17:30	-	Pulsed jets in laminar smooth and rough wall channel flows. Nisat Anika, Lyazid Djenidi, Sedat Tardu	-	Performance of Low-Order Standard Turbulence Models in Predicting Soot Emission from Ethylene Flame Masoud Darbandi, Majid Ghafourizadeh, Sajjad Yousefian
10.00 20.20		Welcome	Reception	
19:00-20:30	Venue: Palazzo Sterri (University of Palermo)			

09:00-09:45	Simone Hochgreb (Cambridge) Understanding the structure and dynamics of turbulent reacting flows via selective experiments Chair: Ananias Tomboulides Room: Normanni					
09:45-10:30	Alfredo Pinelli (City University of London) Flow manipulation based on passive and localised fluid structure interactions Chair: Enrico Napoli Room: Normanni					
10:30-11:00		Coffee	Break			
	Room: Normanni	Room: Ruggero	Room: Angelica	Room: Basile		
11:00-12:40	Flames 1 Chair: Luc Vervisch	Manipulated turbulence 1 Chair: Stefan Hickel	High fidelity methods 1 Chair: Richard Sandberg	Heat Transfer 1 Chair: Karen Flack		
11:00	A comparison of strategies for direct numerical simulation of turbulence chemistry interaction in generic planar turbulent premixed flames Markus Klein, Louis Dressler, Nilanjan Chakraborty, Chriss Stafford	Plunging Airfoil: Leading Edge Vortex Manipulation by Plasma Actuators Imdat Maden, Suad Jakirlic, Cameron Tropea, Jochen Kriegseis, Dennis Kütemeier, Robert Maduta	Model-based near-wall reconstructions for Immersed Boundary methods Elias Balaras, Michael Brown	LES of heat transfer in an asymmetric rib- roughened duct: Influence of rotation Domenico Borello, Franco Rispoli, Alessandro Salvagni, Kemal Hanjalic		
11:20	Extinction of swirl ethanol spray flames in a double-annulus bluff-body burner Jenni Sidey, Patton Allison, Epaminondas Mastorakos	Influence of drag reducing near-wall turbulence control on spectral properties of Reynolds shear stress Alexander Stroh, Davide Gatti, Yosuke Hasegawa, Bettina Frohnapfel	Comparison study of numerical codes for turbulent Rayleigh-Bénard convection Gijs Kooij, Susanne Horn, Richard Stevens, Erwin van der Poel, Mike Botchev, Olga Shishkina, Detlef Lohse, Roberto Verzicco, Bernard Geurts	Direct Simulation of Jet in Crossflow with conjugate heat transfer Zhao Wu, Dominique Laurence, Imran Afgan		
11:40	Large eddy simulation of supersonic H2-O2 combustion Umut Guven, Guillaume Ribert	Characterisation of micro vortex generators effects on shock wave/turbulent boundary layer interaction using large eddy simulation Arnaud Grebert, Julien Bodart, Stéphane Jamme, Laurent Joly	Study of the numerical dissipation impact on the representation of freely decaying and wall-bounded turbulence for the Spectral Difference method Jean-Baptiste Chapelier, Guido Lodato	LES of Turbulent Conjugate Heat Transfer in Porous Media Ryu Chikasue, Yusuke Kuwata, Kazuhiko Suga		
12:00	Stochastic Fields Method Applied to Turbulent Swirling Flames with Acoustic Perturbations W P Jones, S Gallot Lavallee, F Biagioli, B Bunkute, K J Syed	Turbulent duct flow with spanwise wall oscillations Steffen Straub, Philipp Schlatter, Ricardo Vinuesa, Bettina Frohnapfel, Davide Gatti	An Implicit Turbulence Model for Low Mach Roe Scheme Using Truncated Navier-Stokes Equations ChungGang Li, Makoto Tsubokura	Numerical study of flow and heat exchange in a pipe with partially wavy wall Artur Tyliszczak, Mariusz Ksiezyk, Bernard Geurts		
12:20	Large eddy simulation of a turbulent swirling flame using the TFLES model coupled with a dynamic wrinkling formulation Pedro S. Volpiani, Thomas Schmitt, Denis Veynante	Amplitude effects of harmonic actuation on backward-facing step flow Ruyun Hu, Song Fu	RANS and eLES Simulations of Relaminarization Pascal Bader, Wolfgang Sanz, Christoph Steinmayr, Peter Leitl	Large Eddy Simulation of the Flow in Helical Heat Exchangers Elia Merzari, Aleksandr Obabko, Paul Fischer, Haomin Yuan, Yiqi Yu		
12:40-14:00	Lunch					

	Room: Normanni	Room: Ruggero	Room: Angelica	Room: Basile
14:00-15:40	Heat transfer 2	Flames 2	Manipulated turbulence 2	High-fidelity methods 2
	Chair: Bojan Niceno	Chair: Andrzej Boguslawski	Chair: Makoto Tsubokura	Chair: Domenico Borello
14:00	LES of an impinging Heated Jet for a Small Nozzle-to-Plate Distance and high Reynolds Number Pierre Grenson, Hugues Deniau, Bertrand Aupoix	A priori Direct Numerical Simulation Assessment of Algebraic Flame Surface Density Models for Turbulent Flame-Wall Interaction in the context of Large Eddy Simulation Jiawei Lai, Nilanjan Chakraborty, Markus Klein	Flow over a Surface with Multiscale, Randomly Distributed Roughness Pourya Forooghi, Alexander Stroh, Franco Magagnato, Benjamin Krumbein, suad Jakirlic, Bettina Frohnapfel	High-fidelity CFD simulations of pulsed sieve- plate extraction columns Zinedine Kkatir, Bruce Hanson, Michael Fairweather, Peter Heggs
14:20	DNS of a heated turbulent pipe flow at high Prandtl numbers revisting the P-function model	Modelling formation and initial propagation of flame kernels in turbulent non-premixed methane jets with LES/CMC	Impact of multiscale cut-in trailing edge serrations on the wake of a lifting wing	Nek5000 LES Validation for Thermal- Hydraulics of Deformed Wire-Wrap Fuel Assembles
	Christoph Irrenfried, Helfried Steiner	Huangwei Zhang, Andrea Giusti, Epaminondas Mastorakos	Simon Prigent, Oliver Buxton, Paul Bruce	Aleksandr Obabko, Elia Merzari, Paul Fischer, Brian Jackson, Michael Steer
	Direct numerical simulation of thermal entrance region in combined turbulent pipe	Numerical investigation into the blow-off behaviour of swirling spray flames using the	Recovery Process of Turbulent Magnetic Fluid Flow in Downstream of Magnetic Field	On the simulation of the turbulent fluid- structure interaction within an array of tubes
14:40	flow Hirofumi Hattori, Masahide Inagaki, Tomoya Houra, Masato Tagawa	LES/CMC approach Andrea Giusti, Epaminondas Mastorakos	Area Takuma Tsukamoto, Masaaki Motozawa, Yasuo Kawaguchi, Mitsuhiro Fukuta	Anthony Ponce, Thibaut Deloze, Alexandre Nicoli, Pierre Alvarez, Elisabeth Longatte, Marianna Braza, Yannick Hoarau
15:00	Turbulent Entrainment in a Stable Stratified Fluid Lilly Verso, Maarten van Reeuwijk,, Alex Liberzon	Sparse-Lagrangian MMC modelling of a partially-premixed DME/air flame series Gregor Neuber, Andreas Kronenburg, Oliver T. Stein, Jonas Kirchmann, Matthew J. Cleary	The Contribution of Active and Inactive Structures to the Statistics of a Turbulent Pipe Flow Fotos Stylianou, Stavros Kassinos	Using DNS Data to Validate Pressure-Velocity Statistics Determined from Stereo-PIV Measurements Robert Martinuzzi, David Wood, Arman Hemmati, Phillip du Plessix
15:20	An Elliptic Blending Lag Model for Flows In Thermal-Hydraulics Systems Ryan Tunstall, Sylvain Lardeau, Dominique Laurence, Robert Prosser	Numerical Characterisation of Flow Field in a Rapid Compression Machine Using a Hybrid URANS-LES Method Sajjad Yousefian, Nathan J. Quinlan, Henry J. Curran, Rory F. D. Monaghan	Computational Modelling of the Flow and Heat Transfer in Dimpled Channels Khalil Abo Amsha, Tim Craft, Hector Iacovides	Large-eddy simulations of high Reynolds number jets with a suitable subgrid-scale model for solver dependency study Matteo Angelino, Miguel A. Moratilla-Vega, Hao Xia. Gary J. Page
15:40-16:10	Laurence, Robert Prosser	Curran, Rory F. D. Monaghan		Hao Xia, Gary J. Page

	Room: Normanni	Room: Ruggero	Room: Angelica	Room: Basile
16:10-17:50	Turbulence Fundamentals Chair: Ivette Rodriguez	Bluff body flow Chair: Bettina Frohnapfel	Phase transition Chair: Ari Glezer	Turbulence-reaction modeling Chair: Sutanu Sarkar
16:10	Variational Multi-Scale Modeling of Tomographic PIV Results for Estimation of Turbulence Dissipation Rate Inside a Stirred Mixer Chandra Shekhar	Coupled Aerodynamic Control of the Turbulent Wake of a Moving Bluff Body Thomas Lambert, Bojan Vukasinovic, Ari Glezer	Large-eddy simulation of thin film evaporation and condensation from a hot plate in eclosure Carlo Cintolesi, Andrea Petronio, Vincenzo Armenio	Turbulent-chemical-reaction models: old and new; and which way forward? Brian Spalding
16:30	New results with turbulence models adapted for stress-strain lag and rotation/curvature effects in homogeneous incompressible flows Alexandra Stefanescu	Numerical acoustic analysis of a turbulent flow around a bluff body Marta Cianferra, Sandro Ianniello, Vincenzo Armenio	Predicting two-phase and subcooled boiling flows with a two-fluid CFD boiling model combined with a population balance approach Marco Colombo, Michael Fairweather	Modeling and simulations of turbulent dispersion of reactive scalars in complex urban areas Sasa Kenjeres, Patrick Schrijvers, Corne Muilwijk
16:50	Influence of zero-modes on the inertial- range anisotropy of Rayleigh-Taylor and unstably stratified homogeneous turbulence Olivier Soulard, Benoît-Joseph Gréa	Assessment of turbulence models for flow simulation around the Ahmed body Emmanuel GUILMINEAU, Gan Bo DENG, Patrick QUEUTEY, Michel VISONNEAU	A comparison of evaporation models for vapour bubbles in turbulent flow Wiktor Michalek, Paolo Cifani, Giel Priems, Hans Kuerten, Cees van der Geld, Bernard Geurts	A novel low emission combustor concept for gas turbine applications. Jenni Sidey, Robert Gordon, Gilles Bourque, Epaminondas Mastorakos
17:10	Turbulence Modelling in Aeroelastic Problems <i>Marcello Righi</i>	Experimental and numerical investigation of active flow control on a generic truck cabin Guglielmo Minelli, Erwin Adi Hartono, Linus Hjelm, Valery Chernoray, Branislav Basara, Sinisa Krajnovic	LES of Mixing and Condensation at Supercritical Pressures Stefan Hickel	Reduced chemical mechanisms for aviation fuels with RCCE Panayiotis Koniavitis, William Jones, Stelios Rigopoulos
17:30	Influence of vortex shedding in single- and multi-scale grid-generated turbulence Gianfrancesco Melina, Paul Bruce, Christos Vassilicos	Numerical investigation of the flow past a rotating golf ball and its comparison with a rotating smooth sphere Jing Li, Makoto Tsubokura, Masaya Tsunoda	Experimental investigation on the streamwise velocity fluctuation with the Reynolds-number dependence in turbulent viscoelastic-fluid flows Shumpei Hara, Takahiro Tsukahara, Yasuo Kawaguchi	Large-Eddy Simulation of a pulverized coal swirl burner Dorian Midou, Luc Vervisch, Pascale Domingo
19:00-22:00	Conference Dinner Venue: Villa Niscemi			

09:00-09:45		Sutanu Sarkar (UCSD) Turbulence at rough topography in the deep ocean Chair: Vincenzo Armenio Room: Normanni					
09:45-10:30		· · · ·	ent Rayleigh-Benard and Taylor-Couette flow ini Room: Normanni				
10:30-11:00		Coffee	Break				
	Room: Normanni	Room: Ruggero	Room: Angelica	Room: Basile			
11:00-12:40	Transition Chair: Artur Tyliszczak	Turbulence models Chair: Witold Elsner	LES 1 Chair: Arne Johansson	Noise and acoustics Chair: Dominic von Terzi			
11:00	On hypersonic boundary layer transition: role of streaks Jie Ren, Song Fu	Reappraisal of the constant C_epsilon_2 in the k-epsilon turbulence model <i>Lyazid Djenidi</i>	Assessment of subgrid-scale models for large-eddy simulation of complex flows Franck Nicoud	Noise prediction from a rotating cylinder in subcritical Reynolds flow Leonidas Siozos-Rousoulis, Ghader Ghorbaniasl, Chris Lacor			
11:20	An algebraic model for prediction of bypass transition in turbomachinery boundary layer flows Erik Dick, Slawomir Kubacki	A Novel EARSM model for separated flows Stephane Monte, Lionel Temmerman, Benoit Léonard, Benoît Tartinville, Charles Hirsch	Adaptive LES modeling in the context of discontinuous finite elements methods Jean-Baptiste Chapelier, Guido Lodato	Overset LES for Trailing-Edge Noise Computations Rinie Akkermans, Paul Bernicke, Roland Ewert, Juergen Dierke			
11:40	Laminar-turbulent transition in Hagen- Poiseuille flow of a real gas Sergey Novopashin, Gennady Sukhinin, Petr Skovorodko	The development of algebraic stress models using a novel evolutionary algorithm Jack Weatheritt, Richard Sandberg	Investigation of various wall modeling approaches for LES in the presence of mild pressure gradients Olivier Thiry, Matthieu Duponcheel, Grégoire Winckelmans	Far-field Noise Prediction of a Rod-airfoil Benchmark by IDDES and FW-H analogy Wenqing Zhu, Zhixiang xiao			
12:00	An investigation of the transition prediction using KDO RANS model Jinglei Xu, Ding Xu, Yang Zhang, Junqiang Bai	Explicit algebraic Reynolds stress modelling of flows with large density variation Igor Grigoriev, Stefan Wallin, Geert Brethouwer, Arne Johansson	Improved Eddy-Viscosity Modelling of Wind Turbine Wake Interactions Sasa Kenjeres, Joep Hennen	A Numerical Study on the Sound Absorption Mechanism of A Non-Locally Reacting Liner under High SPL Chao Chen, Xiaodong Li, Frank Thiele			
12:20	Further assessment of the grey-area enhanced sigma-DES approach for complex flows Marian Fuchs, Charles Mockett, Jörn Sesterhenn, Frank Thiele	A numerically robust Reynolds stress model for improved prediction of practically relevant separating flow applications Robert Maduta, Suad Jakirlic	Dynamic global-coefficient procedures for wall-adapting subgrid-scale models Shahriar Mohammadi, Romuald Skoda	Direct Numerical Simulation of a Helmholtz resonator excited by a low Mach number turbulent flow Lewin Stein			
12:40-14:00		Lu	nch				

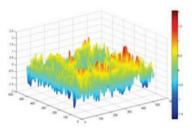
	Room: Normanni	Room: Ruggero	Room: Angelica	Room: Basile	
14:00-15:40	EUROTURBO	LES 2	Friction and drag	Separated flow	
	Chair: Francesco Martelli	Chair: Franck Nicoud	Chair: Mikhail Strelets	Chair: Sergey Novopashin	
14:00	Numerical investigation of the suction side laminar separation bubble for a highlift low pressure turbine blade at low Reynyolds numbers Fabio Bigoni, Stefano Vagnoli, Tony Arts, Tom Verstraete	Resolved Large Eddy Simulation of Turbulence over Anisotropic Porous Media Yusuke Kuwata, Suga Kazuhiko	Skin friction reduction in fully developed turbulent channel flow based on DNS and adjoint shape optimization Thomas Köthe, Claus Wagner	Simulation of flow with massive separation using open-source code Ahmad Fakhari, Andrea Petronio, Vincenzo Armenio, Roberta Padovan	
14:20	Large Eddy simulations of a rotating ribbed channel at high rotation numbers Ignacio Mayo, Tony Arts, Laurent Gicquel	Large-Eddy and Direct Numerical Simulations of the Bachalo-Johnson bump flow with shock-induced separation Philippe Spalart, Kirill Belyaev, Andrey Garbaruk, Michael Shur, Michael Strelets, Andrey Travin	A Reynolds stress model for drag-reducing viscoelastic turbulent flow Shun Inoue, Takahiro Tsukahara, Suad Jakirlić, Yasuo Kawaguchi	Budgets of temperature fluctuations in buoyancy-affected turbulent backward- facing step flows at low Prandtl number Martin Niemann, Jochen Fröhlich	
14:40	Turbulence production, dissipation and time scales in laminar separation bubbles Daniele Simoni, Davide Lengani, Marina Ubaldi, Pietro Zunino, Roberto Guida	Framework for Buoyancy-Driven Flows using Large Eddy Simulations Kiran Bhaganagar, Manjure Nayamatullah, Pavan Rao	Direct Numerical Simulation for Drag Reduction on a Rough Wall with Uniform Blowing Eisuke Mori, Maurizio Quadrio, Koji Fukagata	Cubic turbulence closures and dispersion models for flows around different configurations of ground-mounted buildings Riccardo Longo, Alessandro Parente, Marco Ferrarotti	
15:00	Comparison of Measured and Computational Turbulence Data in a Two-Stage Two-Spool Turbine Test Rig Sabine Bauinger, Pascal Bader, Emil Göttlich, Wolfgang Sanz, Franz Heitmeir	Cylinder wall junction flow: Particle Image Velocimetry and Large Eddy Simulation Ulrich Jenssen, Wolfgang Schanderl, Michael Manhart	History effects and near-equilibrium in turbulent boundary layers with pressure gradient Alexandra Bobke, Ricardo Vinuesa, Ramis Örlü, Philipp Schlatter	Investigations on the flow past a wall- mounted hemisphere based on LES and synthetically generated turbulence Guillaume De Nayer, Stephan Schmidt, Jens Nikolas Wood, Michael Breuer	
15:20	A geometric multi-grid framework for the extraction of the large-scale vortices in turbulent flows. Application to the massively parallel LES of a low-Mach number turbine blade Nicolas Legrand, Ghislain Lartigue, Vincent Moureau	Detached-Eddy Simulation of flow past a pitching NACA 0015 airfoil Liang Wang, Song Fu, Liying Li	The effect of turbulence intensity on the wake of a wall-mounted cube in a turbulent boundary layer R. Jason Hearst, Guillaume Gomit, Bharathram Ganapathisubramani	-	
15:40-16:00		Closing address - A	-		
13.40-10.00	Chair: Bernard Geurts Room: Normanni				

Keynote Speakers

Back to Program

Karen A. Flack

United States Naval Academy



Karen A. Flack is a Professor and Chair of the Mechanical Engineering Department at the United States Naval Academy in Annapolis, Maryland, USA. Her research focuses on turbulent boundary layer physics with a concentration on rough wall boundary layers and frictional drag prediction.

Flack graduated from the University of California at Berkeley in 1989 and completed her PhD at Stanford University in Mechanical Engineering in 1993. She holds her chair at the U.S. Naval Academy since 2004.

Title: The relationship between surface topography and frictional drag

Abstract: Understanding the relationship between a surface's topography and its hydraulic resistance is an important, yet illusive, goal in fluids engineering. Particularly poorly understood are the flow conditions at which a given surface will begin to show the effects of roughness in the form of increased wall shear stress above that of the hydraulically smooth wall and the behavior of frictional drag in the transitionally rough regime. The goal of this research is to develop engineering correlations for the prediction of frictional drag for all roughness regimes. The correlations should be based on information that can be obtained solely from the surface topography, thus

Mathematically generated rough surface with a range of scales

excluding any information that requires hydrodynamic testing. Previous results have shown that the rootmean-square roughness height (krms) and the skewness (Sk) of the probability density function are the roughness scales that best predict frictional drag in the fully rough regime. These and other statistics for a wide range of surfaces are investigated in the transitionally rough regime. Results will be presented for systematically altered surface roughness with a range of scales that follow a power law spectrum.

Vladimir Nikora

University of Aberdeen

Professor Vladimir Nikora is the Sixth Century Chair in Environmental Fluid Mechanics at the School of Engineering, University of Aberdeen, UK. Before coming to Scotland in February 2006, he was Principal Scientist and Manager of the Hydrodynamics Group at the National Institute of Water and Atmospheric Research in New Zealand that he joined in 1995. Dr. Nikora's main research accomplishments relate to improved understanding of stream turbulence, development and applications of the double-averaging methodology for describing and predicting rough-bed turbulent flows, new sediment dynamics concepts related to erosion and transport of cohesive

and non-cohesive sediments, new concepts of flow-biota interactions including those for periphyton, mosses, vascular plants, mussels, and fish communities. Vladimir Nikora is Fellow of the Royal Society of Edinburgh, Editor of IAHR Journal of Hydraulic Research, and a recipient of 2010 Hunter Rouse Hydraulic Engineering Award of the American Society of Civil Engineers that "recognizes outstanding contributions to hydraulics and waterways".

Title: Turbulence in open-channel flows: recent advances and implications for sediment transport, hydraulic resistance and flow-biota interactions

Abstract: Open-channel flow (OCF, e.g., streams and rivers) occupies a special place in a family of turbulent flows. It may exhibit a set of properties that make this flow unique and exciting, i.e.: (1) flow boundaries (sedimentary bed and free surface) can be highly 'deformable' and dynamic, constantly changing in response to varying flow; (2) channel surface may exhibit a complex hierarchical structure covering scales spanning 7-10 orders of magnitude; (3) aquatic biota may significantly influence flow and its boundaries; and (4) flow submergence (i.e., ratio of the flow depth to the height of prevailing roughness elements such as sediment particles, their clusters, bedforms, or benthic organisms) may be as low as 1-4.

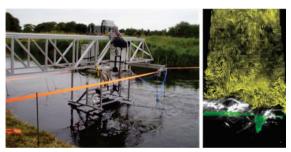


Figure 1. Left: deployment of the Aberdeen Field PIV System in the Urie River, Scotland. Right: flow filed around a moving plant Ranununculus where the plant is shown in gray, plant vertical velocity in green, and flow velocity field in yellow. Full details are in Cameron, Nikora, Albayrak, Miler, Stewart, Siniscalchi, Journal of Fluid Mechanics, 2013, 732, 345-372.

This talk will highlight the key features of OCF turbulence and briefly review similarities with other flow types such as boundary layers, pipes and closed channels. Then, the latest advances in studies of OCF turbulence will be discussed, including turbulence statistics and coherent motions, with particular focus on 'superstructures' (or 'very large scale motions' up to 40-50 flow depths in length) and their potential relation to OCF secondary flows. This will be followed by consideration of turbulence effects in sediment transport, flow-biota interactions, and hydraulic resistance.

Among other findings, it will be shown that particle entrainments on the channel beds are likely associated with interactions between flow superstructures (i.e., 'collisions' of superstructures, 'meandering' across the flow, generate regions of a particular velocity pattern leading to the particle entrainment). Effects of aquatic biota on the OCF turbulence will be illustrated using aquatic vegetation as an example (Fig. 1), considering interactions at multiple scales, from the leaf scale to the plant patch mosaic scale comparable to the flow width. Finally, a theoretical approach for quantifying key contributors to the OCF friction factor will be illustrated for fixed-bed and mobile-bed conditions.

Simone Hochgreb

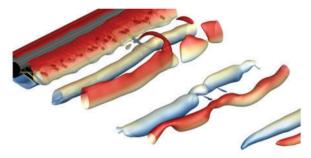
University of Cambridge

Simone Hochgreb is Professor of Combustion at the Univ of Cambridge. She has developed measurement methods for reacting flows for autoignition, spray, soot and coal combustion in a range of devices. Her current work is in the application of optical diagnostics to understanding turbulent flames, combustion instabilities, pollutant emissions and flame synthesis. Prior to Cambridge she held positions at MIT and Sandia National Labs. She is a Fellow of the Royal Aeronautical Society, and has received the Wolfson Merit Award and the Society of Automotive Engineers Ralph R. Teetor Award.

Title: Understanding the structure and dynamics of turbulent reacting flows via selective experiments

Abstract: Predictions about the evolution of turbulent reacting and non-reacting flows approach increasingly fidelity at the largest scales via LES, and smallest via DNS. There is still a battle in the middle ground, for which models must be proposed and validated. Although quasi-DNS calculations continue to be demonstrated, we are still far from a one size fits all approach to modelling turbulent reacting flows. Sensible but not necessarily thoroughly validated models abound as the fill in the spaces left between the grid size and the scales of interest. In particular, mixing and reactions necessarily take place at the molecular level, and require special tools for understanding the interaction between models and experiments. In this talk, we examine the structure of turbulent premixed flames, what the models and measurements say about them, and where experiments and models are trying to meet. In particular, we discuss a recent series of experiments on stratified flames as an illustration of the current progress and some surprises.

Alfredo Pinelli


City University London

Alfredo Pinelli is professor of Fluid Simulation at the School of Engineering and Mathematical Sciences at City University London (CU). Since 1989 he has worked actively in the field of Direct and Large Eddy Simulations of turbulent flows, covering both physical and algorithmic aspects. Lately, he has widened his research interests to the simulation of fluid flows around complex geometries including fluid-structure interaction problems with particular emphasis on biomimetic flow control methodologies. All the mentioned subjects are covered by his publications record that includes about 70 peer reviewed papers and 60 international conferences. Alfredo Pinelli has participated in several National, European and International research projects.

Title: Flow manipulation based on passive and localised fluid structure interactions

Abstract: Surfaces covered by arrayed, slender, deformable, filamentous structures, anchored to a substrate and exposed to viscous flows are ubiquitous in nature, and increasingly seen in bio inspired technology. During this talk, two examples will be explored and discussed in details. The first one concerns the possibility of manipulating a bluff body wake using an array of elastic, slender filaments appended on its lee side. The second one, inspired by the feathers pop up frequently observed in manoeuvring birds, will focus on the use of thin flexible flap-like membrane mounted on the suction side of aerofoils to palliate the effects of sudden

Iso-surfaces of Q, colored with the distance from the mid-plane. ReD=200 corresponding to the first three-dimensional bifurcation (i.e. A mode). Filaments on the lee side are spaced D/4 apart. Filaments natural frequency has been randomly chosen in the range of 0.2 to 5 fs (Karman's undisturbed shedding frequency).

changes of incidence angle. Finally, some preliminary results on the behavior of a turbulent flow developing over a flat plate covered by a dense elastic filamentous carpet where a self-similar solution at the interface may take place will be introduced and discussed.

Sutanu Sarkar

University of California at San Diego

Sutanu Sarkar received his B. Tech from IIT Bombay, M. S. from Ohio State University and Ph. D. from Cornell University. After 4 years as a staff scientist at ICASE, NASA Langley Research Center, he joined UCSD where he is currently the Blasker Professor of Engineering. He has broad interests in turbulence simulation and modeling and has worked in problems concerning the environment, energy, aerospace and propulsion. His current research interests are routes to turbulence and mixing in the ocean, wakes and boundary layers in the natural environment, and renewable energy. He has received a NASA group achievement award (1994), the Bessel Award from the Humboldt

Foundation (2001), and was elected Fellow, American Physical Society (2006), Associate Fellow, AIAA (2009) and Fellow, ASME (2010).

Title: Turbulence at rough topography in the deep ocean

Abstract: Turbulence is essential to maintain the observed stratification in the abyssal ocean and also strongly impacts the biogeochemical state of the ocean. Tidal flow over rough topography in the deep ocean generates internal gravity waves with a fraction of the wave energy breaking down into local turbulence at the generation site and the remainder radiating away to fuel remote turbulence. We have performed high-resolution simulations to examine nonlinear processes and turbulence in two model generation sites: a triangular ridge and a multiscale rough obstacle that is patterned after realistic topography in Luzon Strait. Different flow features are found to be responsible for transition to turbulence at different spatial locations and lead to energetic turbulence at different phases of the oscillating tide. I will discuss how the local dissipation of energy depends on environmental forcing and topography parameters.

Detlef Lohse

University of Twente

Detlef Lohse is Professor and Chair of the Physics of Fluids group at the University of Twente, The Netherlands. His research focuses on multiphase flow from an experimental and theoretical perspective with research addressing microscopic as well as macroscopic scales.

Lohse graduated from the University of Bonn in 1989 with a degree in Physics, and completed his PhD at the University of Marburg in 1992. He served as a postdoctural research fellow at the University of Chicago from 1993 to 1995, and was finally made chair of Physics of Fluids at the University of Twente in 1998.

Title: Turbulent Rayleigh-Benard and Taylor-Couette flow

Abstract: Rayleigh-Benard flow — the flow in a box heated from below and cooled from above — and Taylor-Couette flow -- the flow between two coaxial co- or counter-rotating cylinders -- are the two paradigmatic systems in physics of fluids and many new concepts have been tested with them. They are mathematically well described, namely by the Navier-Stokes equations and the respective boundary conditions.

While the low Reynolds number regime (i.e., weakly driven systems) has been very well explored in the '80s and '90s of the last century, in the fully turbulent regime major research activity only developed in the last decade. This was also possible thanks to the advancement of computational power and improved algorithms and nowadays numerical simulations of such systems can even be done in the so-called ultimate regime of turbulence, in which even the boundary layers become turbulent. In this talk we review this recent progress in our understanding of fully developed Rayleigh-Benard and Taylor-Couette turbulence, from the experimental, theoretical, and numerical point of view. We will explain the parameter dependences of the global transport properties of the flow and the local flow organisation, including velocity profiles and boundary layers, which are closely connected to the global properties. Next, we will discuss transitions between different (turbulent) flow states.

This is joint work with many colleagues over the years, and I in particular would like to name Siegfried Grossmann, Roberto Verzicco, Richard Stevens, Erwin van der Poel, and Rodolfo Ostilla-Monico.